Background Association between human mobility and disease transmission has been established for COVID-19, but quantifying the levels of mobility over large geographical areas is difficult. Google has released Community Mobility Reports (CMRs) containing data about the movement of people, collated from mobile devices. Objective The aim of this study is to explore the use of CMRs to assess the role of mobility in spreading COVID-19 infection in India. Methods In this ecological study, we analyzed CMRs to determine human mobility between March and October 2020. The data were compared for the phases before the lockdown (between March 14 and 25, 2020), during lockdown (March 25-June 7, 2020), and after the lockdown (June 8-October 15, 2020) with the reference periods (ie, January 3-February 6, 2020). Another data set depicting the burden of COVID-19 as per various disease severity indicators was derived from a crowdsourced API. The relationship between the two data sets was investigated using the Kendall tau correlation to depict the correlation between mobility and disease severity. Results At the national level, mobility decreased from –38% to –77% for all areas but residential (which showed an increase of 24.6%) during the lockdown compared to the reference period. At the beginning of the unlock phase, the state of Sikkim (minimum cases: 7) with a –60% reduction in mobility depicted more mobility compared to –82% in Maharashtra (maximum cases: 1.59 million). Residential mobility was negatively correlated (–0.05 to –0.91) with all other measures of mobility. The magnitude of the correlations for intramobility indicators was comparatively low for the lockdown phase (correlation ≥0.5 for 12 indicators) compared to the other phases (correlation ≥0.5 for 45 and 18 indicators in the prelockdown and unlock phases, respectively). A high correlation coefficient between epidemiological and mobility indicators was observed for the lockdown and unlock phases compared to the prelockdown phase. Conclusions Mobile-based open-source mobility data can be used to assess the effectiveness of social distancing in mitigating disease spread. CMR data depicted an association between mobility and disease severity, and we suggest using this technique to supplement future COVID-19 surveillance.
Background Many nations swiftly designed and executed government policies to contain the rapid rise in COVID-19 cases. Government actions can be broadly segmented as movement and mass gathering restrictions (such as travel restrictions and lockdown), public awareness (such as face covering and hand washing), emergency health care investment, and social welfare provisions (such as poor welfare schemes to distribute food and shelter). The Blavatnik School of Government, University of Oxford, tracked various policy initiatives by governments across the globe and released them as composite indices. We assessed the overall government response using the Oxford Comprehensive Health Index (CHI) and Stringency Index (SI) to combat the COVID-19 pandemic. Objective This study aims to demonstrate the utility of CHI and SI to gauge and evaluate the government responses for containing the spread of COVID-19. We expect a significant inverse relationship between policy indices (CHI and SI) and COVID-19 severity indices (morbidity and mortality). Methods In this ecological study, we analyzed data from 2 publicly available data sources released between March 2020 and October 2021: the Oxford Covid-19 Government Response Tracker and the World Health Organization. We used autoregressive integrated moving average (ARIMA) and seasonal ARIMA to model the data. The performance of different models was assessed using a combination of evaluation criteria: adjusted R2, root mean square error, and Bayesian information criteria. Results implementation of policies by the government to contain the COVID-19 crises resulted in higher CHI and SI in the beginning. Although the value of CHI and SI gradually fell, they were consistently higher at values of >80% points. During the initial investigation, we found that cases per million (CPM) and deaths per million (DPM) followed the same trend. However, the final CPM and DPM models were seasonal ARIMA (3,2,1)(1,0,1) and ARIMA (1,1,1), respectively. This study does not support the hypothesis that COVID-19 severity (CPM and DPM) is associated with stringent policy measures (CHI and SI). Conclusions Our study concludes that the policy measures (CHI and SI) do not explain the change in epidemiological indicators (CPM and DPM). The study reiterates our understanding that strict policies do not necessarily lead to better compliance but may overwhelm the overstretched physical health systems. Twenty-first–century problems thus demand 21st-century solutions. The digital ecosystem was instrumental in the timely collection, curation, cloud storage, and data communication. Thus, digital epidemiology can and should be successfully integrated into existing surveillance systems for better disease monitoring, management, and evaluation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.