Preservation of the pulp in a traumatized immature fractured incisor tooth is of prime importance in order to achieve apexogenesis, a natural apical closure. The main factor influencing this is pulpal protection by a bioactive material proving optimum marginal seal in preventing any microleakage. This case report presents an 8-year-old female diagnosed with Ellis Class 3 fracture of immature tooth 11 involving the mesial pulp horn. Under rubber dam isolation, a partial pulpotomy was performed and the pulp was sealed using a new bioactive material BIODENTINE to stimulate apexogenesis, dentine replacement and pulp protection. The fractured segment was reattached for optimum esthetics, which was a concern for the patient. The patient was followed-up for 1, 3, 6 and 12 months, which revealed continued apical closure and maintenance of pulp vitality. The patient remained asymptomatic. This case report provides evidence for the potential use of Biodentine as an effective pulp capping material in the future.
Bone height restrictions are more common in the posterior regions of the mandible, because of either bone resorption resulting from tooth loss or even anatomic limitations, such as the position of the inferior alveolar nerve. In situations where adequate bone height is not available in the posterior mandible region, smaller lengths of implants may have to be used but it has been reported that the use of long implants (length ≥10 mm) is a positive factor in osseointegration and authors have reported failures with short implants. Hence knowledge about the stress generated on the bone with different lengths of implants needs scientific evaluation. The purpose of this study was to compare and evaluate the influence of different lengths of implants on stress upon bone in mandibular posterior area. A 3 D finite element model was made of the posterior mandible using the details from a CT scan, using computer software (ANSYS 12). Four simulated implants with lengths 6 mm, 8 mm, 10 mm and 13 mm were placed in the centre of the bone. A static vertical force of 250 N and a static horizontal force of 100 N were applied. The stress generated in the cortical and cancellous bone around the implant were recorded and evaluated with the help of ANSYS. In this study, Von Mises stress on a 6 mm implant under a static vertical load of 250 N appeared to be almost in the same range of 8 and 10 mm implant which were more as compared to 13 mm implant. Von Mises stress on a 6mm implant under a static horizontal load of 100 N appeared to be less when compared to 8, 10 and 13 mm implants. From the results obtained it may be inferred that under static horizontal loading conditions, shorter implants receive lesser load and thus may tend to transfer more stresses to the surrounding bone. While under static vertical loading the shorter implants bear more loads and comparatively transmit lesser load to the surrounding bone.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.