Transcranial magnetic stimulation (TMS) has been widely used in studies of human motor and cognitive functions as well as in clinical treatment. Biophysical mechanism underlying its e!ect is, however, largely unknown. Here, we develop a theory to calculate the e!ect of magnetic stimulation on arbitrary neuronal structure. Then, we employ a computer simulation which combines a realistic multicompartmental model of neocortical neurons and the calculation of the induced electric "eld. The simulation shows that a single magnetic pulse applied to model cortical neurons can induce brief burst "ring followed by a silent period of duration comparable to experimental data of TMS. Our simulation o!ers a new clue to understand physiology of TMS by demonstrating that magnetic stimulation acts on biophysics of the dendrites in neocortical neurons.
ObjectDeltoid muscle weakness due to C-5 nerve root injury following cervical spine surgery is an uncommon but potentially debilitating complication. Symptoms can manifest upon emergence from anesthesia or days to weeks following surgery. There is conflicting evidence regarding the efficacy of spontaneous electromyography (spEMG) monitoring in detecting evolving C-5 nerve root compromise. By contrast, transcranial electrical stimulation–induced motor evoked potential (tceMEP) monitoring has been shown to be highly sensitive and specific in identifying impending C-5 injury. In this study the authors sought to 1) determine the frequency of immediate versus delayed-onset C-5 nerve root injury following cervical spine surgery, 2) identify risk factors associated with the development of C-5 palsies, and 3) determine whether tceMEP and spEMG neuromonitoring can help to identify acutely evolving C-5 injury as well as predict delayed-onset deltoid muscle paresis.MethodsThe authors retrospectively reviewed the neuromonitoring and surgical records of all patients who had undergone cervical spine surgery involving the C-4 and/or C-5 level in the period from 2006 to 2008. Real-time tceMEP and spEMG monitoring from the deltoid muscle was performed as part of a multimodal neuromonitoring protocol during all surgeries. Charts were reviewed to identify patients who had experienced significant changes in tceMEPs and/or episodes of neurotonic spEMG activity during surgery, as well as those who had shown new-onset deltoid weakness either immediately upon emergence from the anesthesia or in a delayed fashion.ResultsTwo hundred twenty-nine patients undergoing 235 cervical spine surgeries involving the C4–5 level served as the study cohort. The overall incidence of perioperative C-5 nerve root injury was 5.1%. The incidence was greatest (50%) in cases with dual corpectomies at the C-4 and C-5 spinal levels. All patients who emerged from anesthesia with deltoid weakness had significant and unresolved changes in tceMEPs during surgery, whereas only 1 had remarkable spEMG activity. Sensitivity and specificity of tceMEP monitoring for identifying acute-onset deltoid weakness were 100% and 99%, respectively. By contrast, sensitivity and specificity for spEMG were only 20% and 92%, respectively. Neither modality was effective in identifying patients who demonstrated delayed-onset deltoid weakness.ConclusionsThe risk of new-onset deltoid muscle weakness following cervical spine surgery is greatest for patients undergoing 2-level corpectomies involving C-4 and C-5. Transcranial electrical stimulation–induced MEP monitoring is a highly sensitive and specific technique for detecting C-5 radiculopathy that manifests immediately upon waking from anesthesia. While the absence of sustained spEMG activity does not rule out nerve root irritation, the presence of excessive neurotonic discharges serves both to alert the surgeon of such potentially injurious events and to prompt neuromonitoring personnel about the need for additional tceMEP testing. Delayed-onset C-5 nerve root injury cannot be predicted by intraoperative neuromonitoring via either modality.
The peroneal nerve is susceptible to injury due to compression at the fibular head for patients placed in the lithotomy, hemilithotomy or lateral decubitus positions during surgery. Upper extremity somatosensory and transcranial electric motor evoked potential monitoring has proven efficacious for identifying impending positional brachial plexopathy or upper extremity peripheral neuropathy in adult and pediatric patients undergoing spine surgery. We report on two cases to illustrate the usefulness of monitoring transcranial electric motor evoked potentials recorded from tibialis anterior muscle to identify emerging peroneal nerve compression secondary to lateral decubitus positioning.
Administration of ITM in doses currently used at our institution did not cause more than a 70% attenuation of mean tceMEP amplitudes or latency changes of an ITM study group relative to control subjects during the 30-minute period after injection. Further studies are required to determine if there are delayed effects after this initial time period.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.