In this paper, a rectangular eight shaped Electromagnetic Band Gap (EBG) structure at 5.8 GHz Industrial, Scientific and Medical (ISM) band for wearable application is proposed with intent to improve the impedance bandwidth of antenna. The unit cell of an EBG structure is formed using eight shape on outer ring with inner square patches. The simulation of the eight shape EBG unit cell is carried out using eigen mode solution of Ansys High Frequency Structure Simulator (HFSS). Simulated results are validated by experimental results. The application of proposed EBG for an inverse E-shape monopole antenna at 5.8 GHz is also demonstrated. Band stop property of EBG structure reduces surface waves, and therefore, the back lobe of a wearable antenna is reduced. The frequency detuning of antenna takes place due to high losses in human body. Suitably designed EBG structure reduces this undesirable effect and also improves front to back ratio. The proposed compact antenna with designed EBG has observed the impedance bandwidth of 5.60 GHz to 6.15 GHz which covers 5.8 GHz ISM band. Evaluation of antenna performance under bending condition and on-body condition is carried out. Effectiveness of EBG array structure for Specific Absorption Rate (SAR) reduction on three layer body model is demonstrated by simulations. Calculated values of SAR for tissue in 1 g and 10 g are both less than the limitations. In conclusion, it is appropriate to use the proposed antenna in wearable applications.
In this paper, a rectangular embedded dual band Electromagnetic Band Gap (EBG) structure at frequencies 2.45/5.8 GHz useful in industrial, scientific, and medical (ISM) band for various wearable applications is proposed. The main intent of this work is to design a dual-band EBG to reduce specific absorption rate (SAR). The unit cell which is a part of the EBG structure is formed using a rectangular patch. It has a U-shaped rectangular slot and a stretched strip with a rectangular patch at end. EBG unit cell simulation is accomplished by solving eigen-mode problem in High Frequency Structure Simulator (HFSS). EBG structure has to be suitably designed and fine tuned for specified band stop property to reduce surface waves. It must improve front to back ratio (FBR). With placing antenna on human body, frequency detuning occurs which is undesirable thus emphasizing the need of improvement in impedance bandwidth. This improvement can be achieved by a suitable design of EBG structure. In this work, the proposed EBG structure is integrated with a dual-band monopole antenna at frequencies 2.45/5.8 GHz for wearable application. The evaluation of antenna performance on a four layer body model is carried out. Simulations are used to demonstrate EBG array structure effectiveness for the reduction of Specific Absorption Rate (SAR) on the four layer body model. Computed SAR values for tissue in 1 g and 10 g are within standard prescribed limits. It is concluded that the proposed dual-band antenna is appropriate for wearable applications. Proposed EBG array is fabricated and integrated with a twin E-shaped monopole antenna. The measurement of reflection coefficient, radiation pattern, and transmission coefficient of fabricated EBG array is carried out. The measured and simulated results show good agreement. Antenna performance in the event of bending condition and on-body condition is assessed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.