This randomized clinical trial evaluates the safety and efficacy of the monoclonal anti-tau antibody semorinemab in individuals with prodromal to mild Alzheimer disease.
Age‐related central neurodegenerative diseases, such as Alzheimer's and Parkinson's disease, are a rising public health concern and have been plagued by repeated drug development failures. The complex nature and poor mechanistic understanding of the etiology of neurodegenerative diseases has hindered the discovery and development of effective disease‐modifying therapeutics. Quantitative systems pharmacology models of neurodegeneration diseases may be useful tools to enhance the understanding of pharmacological intervention strategies and to reduce drug attrition rates. Due to the similarities in pathophysiological mechanisms across neurodegenerative diseases, especially at the cellular and molecular levels, we envision the possibility of structural components that are conserved across models of neurodegenerative diseases. Conserved structural submodels can be viewed as building blocks that are pieced together alongside unique disease components to construct quantitative systems pharmacology (QSP) models of neurodegenerative diseases. Model parameterization would likely be different between the different types of neurodegenerative diseases as well as individual patients. Formulating our mechanistic understanding of neurodegenerative pathophysiology as a mathematical model could aid in the identification and prioritization of drug targets and combinatorial treatment strategies, evaluate the role of patient characteristics on disease progression and therapeutic response, and serve as a central repository of knowledge. Here, we provide a background on neurodegenerative diseases, highlight hallmarks of neurodegeneration, and summarize previous QSP models of neurodegenerative diseases.
There is strong interest in developing predictive models to better understand individual heterogeneity and disease progression in Alzheimer's disease (AD). We have built upon previous longitudinal AD progression models, using a nonlinear, mixed-effect modeling approach to predict Clinical Dementia Rating Scale -Sum of Boxes (CDR-SB) progression. Data from the Alzheimer's Disease Neuroimaging Initiative (observational study) and placebo arms from four interventional trials (N = 1093) were used for model building. The placebo arms from two additional interventional trials (N = 805) were used for external model validation. In this modeling framework, CDR-SB progression over the disease trajectory timescale was obtained for each participant by estimating disease onset time (DOT). Disease progression following DOT was described by both global progression rate (RATE) and individual progression rate (α). Baseline Mini-Mental State Examination and CDR-SB scores described the interindividual variabilities in DOT and α well. This model successfully predicted outcomes in the external validation datasets, supporting its suitability for prospective prediction and use in design of future trials. By predicting individual participants' disease progression trajectories using baseline characteristics and comparing these against the observed responses to new agents, the model can help assess treatment effects and support decision making for future trials.
Despite considerable investment into potential therapeutic approaches for Alzheimer's disease (AD), currently approved treatment options are limited. Predictive modeling using quantitative systems pharmacology (QSP) can be used to guide the design of clinical trials in AD. This study developed a QSP model representing amyloid beta (Aβ) pathophysiology in AD. The model included mechanisms of Aβ monomer production and aggregation to form insoluble fibrils and plaques; the transport of soluble species between the compartments of brain, cerebrospinal fluid (CSF), and plasma; and the pharmacokinetics, transport, and binding of monoclonal antibodies to targets in the three compartments. Ordinary differential equations were used to describe these processes quantitatively. The model components were calibrated to data from the literature and internal studies, including quantitative data supporting the underlying AD biology and clinical data from clinical trials for anti‐Aβ monoclonal antibodies (mAbs) aducanumab, crenezumab, gantenerumab, and solanezumab. The model was developed for an apolipoprotein E (APOE) ɛ4 allele carrier and tested for an APOE ɛ4 noncarrier. Results indicate that the model is consistent with data on clinical Aβ accumulation in untreated individuals and those treated with monoclonal antibodies, capturing increases in Aβ load accurately. This model may be used to investigate additional AD mechanisms and their impact on biomarkers, as well as predict Aβ load at different dose levels for mAbs with known targets and binding affinities. This model may facilitate the design of scientifically enriched and efficient clinical trials by enabling a priori prediction of biomarker dynamics in the brain and CSF.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.