This study documents the clinical features of JRP in Sri Lankan children. It has established the usefulness of sialography and ultrasonography in the diagnosis of JRP.
Pregabalin is effective in treating many neuropathic pain conditions. However, the mechanisms of its analgesic effects remain poorly understood. The aim of the present study was to determine whether pregabalin suppresses facial mechanical hypersensitivity and evoked glutamate release in the medullary dorsal horn (MDH) in a rodent model of trigeminal neuropathic pain. Nociceptive mechanical sensitivity was assessed pre-operatively, and then post-operatively 1 h following pregabalin or vehicle (saline) treatment on post-operative days 2 and 5 following infraorbital nerve transection (IONX). In addition, an in vivo microdialysis probe was inserted into the exposed medulla post-operatively and dialysate samples were collected. Glutamate release was then evoked by mustard oil (MO) application to the tooth pulp, and the effects of pregabalin or vehicle were examined on the MDH glutamate release. Glutamate concentrations in the dialysated samples were determined by HPLC, and data analysed by ANOVA. IONX animals (but not control animals) showed facial mechanical hypersensitivity for several days post-operatively. In addition, tooth pulp stimulation with MO evoked a transient release of glutamate in the MDH in IONX animals. Compared to vehicle, administration of pregabalin significantly attenuated the facial mechanical hypersensitivity as well as the MO-evoked glutamate release in MDH. This study provides evidence in support of recent findings pointing to the usefulness of pregabalin in the treatment of orofacial neuropathic pain.1
We examined the effects of epidural electrical stimulation of primary (SI) and secondary (SII) somatosensory cortex on expression of c-Fos protein in rat medullary dorsal horn neurons (Vc; trigeminal nucleus caudalis) in response to formalin-induced noxious stimulation. Epidural electrical stimulation (single pulse, 0.2 msec duration at 10 Hz) was applied to the left facial region SI or SII at three different stimulus intensities, 0.1, 0.5, and 1.0 mA for 60 min 0 or 2 hr after bilateral injection of formalin into the lower lip. SII stimulation at 1.0 mA immediately after injection of formalin, significantly decreased the number of Fos-positive cells in the right VcI/II by 32.4%. There was no significant change in the number of Fos-positive cells in the VcIII/IV. SII stimulation at 0.5 and 1.0 mA 2 hr after injection of formalin, significantly decreased the number of Fos-positive cells in the right VcI/II by 47.9% and 40.8%, but significantly increased the number of Fos-positive cells in the right VcIII/IV by 178.8% and 324.3%, respectively. In contrast, SI stimulation had no effect on expression of c-Fos in Vc. Possible direct corticotrigeminal projections were labeled anterogradely by injection of WGA-HRP into the SI and SII. In the Vc, labeled terminals were distributed mostly in the contralateral medial half of VcIII/IV and medullary reticular nucleus dorsalis but rarely in VcI/II. These results suggest that activation of SII-medullary fibers suppress nociceptive information from the oro-facial regions.
Because there are many conflicting reports on cerebroprotective effects of hypothermia and barbiturates, we examined the degree of neuroprotection at defined temperatures (normothermia, 37 degrees C; mild hypothermia, 32 degrees C; deep hypothermia, 22 degrees C; and profound hypothermia, 17 degrees C) and various concentrations (low, 4 microM; moderate, 40 microM; and high, 400 & microM) of thiopentone sodium (TPS), alone and in combination in cortical cultures exposed to prolonged hypoxia (24-48 hr). The survival rate of embryonic day (E)16 Wistar rat cortical neurons was evaluated on photomicrographs before and after experiments. During the 24-hr hypoxic period, the survival rate of neurons was maximal with combinations of mild hypothermia with 40 microM (91.6 +/- 0.7%) and 400 microM TPS (90.8 +/- 0.7%) or deep hypothermia combined with all concentrations of TPS (4 microM, 90.6 +/- 1.0%; 40 microM, 91.4 +/- 0.8%; 400 microM, 91.8 +/- 1.2%). During 48 hr hypoxia, the highest survival rate was seen with the combination of deep hypothermia and either 40 microM (90.9 +/- 0.6%) or 400 microM (91.1 +/- 1.4%) TPS. In the presence of profound hypothermia in combination with all concentrations of TPS, the survival rate was significantly reduced (P< 0.01) compared to combined application of either mild or deep hypothermia with TPS. In summary, maximal neuroprotection was attained with hypothermia and TPS in combination rather than applied individually, during prolonged hypoxic episodes (24- 48 hr). During a 24-hr hypoxic period, both mild and deep hypothermia combined with a clinically relevant concentration of TPS (40 microM) offered the highest neuroprotection. Only deep hypothermia provided maximal neuroprotection when combined with 40 microM TPS, during 48-hr hypoxia. Combination of profound hypothermia and TPS did not confer considerable neuroprotection during long lasting hypoxia.
In this study, the responses of nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d) and neuronal nitric oxide synthase (nNOS) activities were quantitatively analyzed at different times in both ipsilateral and contralateral sides of trigeminal nuclei, after unilateral trigeminal muscle nerve transection, in Sprague Dawley rats. In the control animals, both NADPH-d- and nNOS-positive neurons were constitutively distributed in the rostrolateral solitary tract nucleus, dorsomedial part of trigeminal nucleus oralis (Vo/Sn), and superficial layers (VcI/II) of the trigeminal nucleus caudalis (Vc). NADPH-d-positive neurons appeared in the trigeminal mesencephalic nucleus ipsilaterally at 5 days (mean +/- SEM: 30.5 +/- 5.6) and were maintained until 8 weeks (33 +/- 10.6) after the denervation. In the trigeminal motor nucleus, NADPH-d-positive neurons appeared transiently and bilaterally, peaking at 1 week (663.5 +/- 156.2, ipsilateral side; 687.5 +/- 118.6, contralateral side) after unilateral denervation of the masseteric nerve. In both Vo/Sn and Vc, the number of NADPH-d-positive neurons in the control animals showed a decrease at 3 days but significantly increased from 5 days to 1 week and gradually fell to the control values by 8 weeks after the denervation. There were no significant differences observed between the two sides in either Vo/Sn or Vc. nNOS-positive neurons were similarly distributed and the numbers of labeled neurons were similar to those of NADPH-d-positive neurons after the denervation, although the changes were delayed by approximately 1 week. In conclusion, after unilateral nerve transection, the peak NADPH-d activity occurs 1 week prior to nNOS activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.