Analyzing the <span>big stream data and other valuable information is a significant task. Several conventional methods are designed to analyze the big stream data. But the scheduling accuracy and time complexity is a significant issue. To resolve, an elastic-net kernelized multivariate discriminant map reduce classification (EKMDMC) is introduced with the novelty of elastic-net regularization-based feature selection and kernelized multivariate fisher Discriminant MapReduce classifier. Initially, the EKMDMC technique executes the feature selection to improve the prediction accuracy using the Elastic-Net regularization method. Elastic-Net regularization method selects relevant features such as central processing unit (CPU) time, memory and bandwidth, energy based on regression function. After selecting relevant features, kernelized multivariate fisher discriminant mapr classifier is used to schedule the tasks to optimize the processing unit. Kernel function is used to find higher similarity of stream data tasks and mean of available classes. Experimental evaluation of proposed EKMDMC technique provides better performance in terms of resource aware predictive scheduling efficiency, false positive rate, scheduling time and memory consumption.</span>
The paper presents the software quality management is a highly significant one to ensure the quality and to review the reliability of software products. To improve the software quality by predicting software failures and enhancing the scalability, in this paper, we present a novel reinforced Cuckoo search optimized latent Dirichlet allocation based Ruzchika indexive regression (RCSOLDA-RIR) technique. At first, Multicriteria reinforced Cuckoo search optimization is used to perform the test case selection and find the most optimal solution while considering the multiple criteria and selecting the optimal test cases for testing the software quality. Next, the generative latent Dirichlet allocation model is applied to predict the software failure density with selected optimal test cases with minimum time. Finally, the Ruzchika indexive regression is applied for measuring the similarity between the preceding versions and the new version of software products. Based on the similarity estimation, the software failure density of the new version is also predicted. With this, software error prediction is made in a significant manner, therefore, improving the reliability of software code and service provisioning time between software versions in software systems is also minimized. An experimental assessment of the RCSOLDA-RIR technique achieves better reliability and scalability than the existing methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.