Telomeres protect the ends of linear chromosomes from being recognized as damaged DNA, and telomere stability is required for genome stability. Here we demonstrate that telomere stability in androgen receptor (AR)-positive LNCaP human prostate cancer cells is dependent on AR and androgen, as AR inactivation by AR antagonist bicalutamide (Casodex), AR-knockdown, or androgen-depletion caused telomere dysfunction, and the effect of androgen-depletion or Casodex was blocked by the addition of androgen. Notably, neither actinomycin D nor cycloheximide blocked the DNA damage response to Casodex, indicating that the role of AR in telomere stability is independent of its role in transcription. We also demonstrate that AR is a component of telomeres, as AR-bound chromatin contains telomeric DNA, and telomeric chromatin contains AR. Importantly, AR inactivation by Casodex caused telomere aberrations, including multiple abnormal telomere signals, remindful of a fragile telomere phenotype that has been described previously to result from defective telomere DNA replication. We suggest that AR plays an important role in telomere stability and replication of telomere DNA in prostate cancer cells, and that AR inactivation-mediated telomere dysfunction may contribute to genomic instability and progression of prostate cancer cells.
Background: Androgen receptor (AR) inactivation causes telomere dysfunction. Results: AR-inactivation-induced telomere dysfunction led to the activation of ATM at telomeres, and ATM inhibition blocked repair of damaged telomeric DNA and augmented cell death. Conclusion: ATM promotes survival of AR-inactivated prostate cancer cells with telomere dysfunction. Significance: ATM inhibitors may potentiate the efficacy of AR-targeted therapies for the treatment of prostate cancer.
Telomere stability is important for cell viability, as cells with telomere DNA damage that is not repaired do not survive. We reported previously that androgen receptor (AR) antagonist induces telomere DNA damage in androgen-sensitive LNCaP prostate cancer cells; this triggers a DNA damage response (DDR) at telomeres that includes activation of ATM, and blocking ATM activation prevents telomere DNA repair and leads to cell death. Remarkably, AR antagonist induces telomere DNA damage and triggers ATM activation at telomeres also in 22Rv1 castration-resistant prostate cancer (CRPC) cells that are not growth inhibited by AR antagonist. Treatment with AR antagonist enzalutamide (ENZ) or ATM inhibitor (ATMi) by itself had no effect on growth in vitro or in vivo, but combined treatment with ENZ plus ATMi significantly inhibited cell survival in vitro and tumor growth in vivo. By inducing telomere DNA damage and activating a telomere DDR, an opportunity to inhibit DNA repair and promote cell death was created, even in CRPC cells. 22Rv1 cells express both full-length AR and AR splice variant AR-V7, but full-length AR was found to be the predominant form of AR associated with telomeres and required for telomere stability. Although 22Rv1 growth of untreated 22Rv1 cells appears to be driven by AR-V7, it is, ironically, expression of full-length AR that makes them sensitive to growth inhibition by combined treatment with ENZ plus ATMi. Notably, this combined treatment approach to induce telomere DNA damage and inhibit the DDR was effective in inducing cell death also in other CRPC cell lines (LNCaP/AR and C4-2B). Thus, the use of ENZ in combination with a DDR inhibitor, such as ATMi, may be effective in prolonging disease-free survival of patients with AR-positive metastatic CRPC, even those that co-express AR splice variant.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.