The gut is a well-established route of infection and target for viral damage by SARS-CoV-2. This is supported by the clinical observation that about half of COVID-19 patients exhibit gastrointestinal (GI) symptoms. We asked whether the analysis of plasma could provide insight into gut barrier dysfunction in patients with COVID-19 infection. Plasma samples of COVID-19 patients (n=30) and healthy control (n=16) were collected during hospitalization. Plasma microbiome was analyzed using 16S rRNA sequencing, metatranscriptomic analysis, and gut permeability markers including FABP-2, PGN and LPS in both patient cohorts. Almost 65% (9 out 14) COVID-19 patients showed abnormal presence of gut microbes in their bloodstream. Plasma samples contained predominately Proteobacteria, Firmicutes, and Actinobacteria. The abundance of gram-negative bacteria (Acinetobacter, Nitrospirillum, Cupriavidus, Pseudomonas, Aquabacterium, Burkholderia, Caballeronia, Parabhurkholderia, Bravibacterium, and Sphingomonas) was higher than the gram-positive bacteria (Staphylococcus and Lactobacillus) in COVID-19 subjects. The levels of plasma gut permeability markers FABP2 (1282 [plusmn]199.6 vs 838.1[plusmn]91.33; p=0.0757), PGN (34.64[plusmn]3.178 vs 17.53[plusmn]2.12; p<0.0001), and LPS (405.5[plusmn]48.37 vs 249.6[plusmn]17.06; p=0.0049) were higher in COVID-19 patients compared to healthy subjects. These findings support that the intestine may represent a source for bacteremia and may contribute to worsening COVID-19 outcomes. Therapies targeting the gut and prevention of gut barrier defects may represent a strategy to improve outcomes in COVID-19 patients.
In diabetes, the retina, a tissue with unique metabolic needs, demonstrates dysregulation of the intricate balance between nutrient availability and utilization. This results in cholesterol accumulation, pro-inflammatory and pro-apoptotic changes, and consequently neurovascular damage. Sirtuin 1 (SIRT1), a nutrient sensing deacetylase, is downregulated in the diabetic retina. In this study, the effect of SIRT1 stimulation by fasting or by pharmacological activation using SRT1720, was evaluated on retinal cholesterol metabolism, inflammation and neurovascular damage. SIRT1 activation, in retinal endothelial cells (REC) and neuronal retinal progenitor cells (R28), led to Liver X Receptor alpha (LXRα) deacetylation and subsequent increased activity, as measured by increased ATP-binding cassette transporter (ABC) A1 and G1 mRNA expression. In turn, increased cholesterol export resulted in decreased REC cholesterol levels. SIRT1 activation also led to decreased inflammation. SIRT1 activation, in vivo, prevented diabetes-induced inflammation and vascular and neural degeneration.Diabetes-induced visual function impairment, as measured by electroretinogram and optokinetic response, was significantly improved as a result of SIRT1 activation. Taken together, activation of SIRT1 signaling is an effective therapeutic strategy that provides a
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.