The gymnotiform electric fish Brachyhypopomus pinnicaudatus communicates with a sexually dimorphic electric waveform, the electric organ discharge (EOD). Males display pronounced circadian rhythms in the amplitude and duration of their EODs. Changes in the social environment influence the magnitudes of these circadian rhythms and also produce more transient responses in the EOD waveforms. Here we show that injections of serotonin produce quick, transient, dosedependent enhancements of the male EOD characters similar to those induced by encounters with another male. The response to serotonin administered peripherally begins 5-10·min post injection and lasts approximately 3·h. The magnitude of the response to serotonin is tightly associated with the magnitude of the day-to-night swing of the circadian rhythm prior to injection. Taken together these findings suggest that the male's social environment influences his response to serotonin by altering the function of some part of the downstream chain between the serotonin receptors and the ion channels involved in control of the EOD waveform. Although chronic activation of serotonin circuitry is widely known to elicit subordinate behavior, we find that 5-HT initially increases a dominance signal in these fish. These findings are consistent with the emerging view that serotonin facilitates different adaptive responses to acute and chronic social challenge and stress.
Many electric fish produce sexually dimorphic electric organ discharges. Although electric organ discharges are comprised of action potentials, those of the Gymnotiform family Hypopomidae show significant plasticity in response to stress and time of day. We show here that male Brachyhypopomus pinnicaudatus (Hopkins 1991), adjusts the degree of sexual dimorphism in its electric organ discharge depending on immediate social conditions. Three to five days of isolation resulted in gradual decrease of two sexually dimorphic waveform characters: duration and amplitude. Introduction of a second fish to the experimental tank restored electric organ discharge duration and amplitude. Duration recovered quicker than amplitude, and both recovered faster in the presence of males than females. In studies of other electric fish species, treatment with steroid sex hormones have taken several days to increase sexual dimorphism in the electric organ discharge. The socially induced changes seen in this study are initiated too quickly to involve classic steroid action of genomic transcription and thus may depend on another mechanism. Socially induced regulation of the male's electric organ discharge waveform is consistent with the compromises in signaling strategy shown by other taxa with costly sexual advertisement signals.
SUMMARYTo understand the evolution of sexually dimorphic communication signals, we must quantify their costs, including their energetic costs, the regulation of these costs, and the difference between the costs for the sexes. Here, we provide the first direct measurements of the relative energy expended on electric signals and show for the focal species Brachyhypopomus pinnicaudatus that males spend a significantly greater proportion of their total energy budget on signal generation (11-22%) compared with females (3%). Both sexes significantly reduce the energy spent on electric signals during daylight hours through circadian modulation of the amplitude, duration and repetition rate of the electric signal, but this effect is more marked in males.
Weakly electric fish have long been known to express day-night oscillations in their discharge rates, and in the amplitude and duration of individual electric organ discharges (EODs). Because these oscillations are altered by social environment and neuroendocrine interactions, electric fish are excellent organisms for exploring the social and neuroendocrine regulation of circadian rhythm expression. Previous studies asserting that these oscillations are circadian rhythms have been criticized for failing to control temperature and randomize feeding regimes, or for running the fish under constant conditions for just 2-3 days. Here we show that the day-night oscillations in the EODs of the neotropical gymnotiform fish Brachyhypopomus pinnicaudatus free-run for over a week under constant photic and thermal conditions, and randomized food provisioning. Sex differences were apparent in strength and magnitude of the circadian oscillations; male oscillations were stronger and larger. All three parameters retain a common oscillation period while differing in the persistence of oscillation strength and magnitude, a difference consistent with proposals by others that declines of behavioral circadian rhythms may result from breakdowns downstream of the central oscillator.
SummaryGymnotiform weakly electric fish produce an electric signal to sense their environment and communicate with conspecifics. Although the generation of such relatively large electric signals over an entire lifetime is expected to be energetically costly, supporting evidence to date is equivocal. In this article, we first provide a theoretical analysis of the energy budget underlying signal production. Our analysis suggests that wave-type and pulse-type species invest a similar fraction of metabolic resources into electric signal generation, supporting previous evidence of a trade-off between signal amplitude and frequency. We then consider a comparative and evolutionary framework in which to interpret and guide future studies. We suggest that species differences in signal generation and plasticity, when considered in an energetics context, will not only help to evaluate the role of energetic constraints in the evolution of signal diversity but also lead to important general insights into the energetics of bioelectric signal generation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.