Imaging of the orbit plays an important role in the workup of orbital emergencies. Orbital imaging is particularly useful in the emergency department, where clinical history and physical examination may be limited or delayed until the exclusion or treatment of more life-threatening conditions. Cross-sectional orbital imaging with multidetector computed tomography (CT) and magnetic resonance (MR) imaging is commonly performed in addition to ultrasonography. In an emergent setting, CT is the preferred modality when evaluating for intraorbital foreign bodies, fractures, or calcifications within a mass lesion. MR imaging is typically the modality of choice for orbital pathologic conditions, owing to its superior ability to delineate the orbital soft tissues and visual pathways. CT and MR imaging together may supplement clinical evaluation by helping establish an accurate diagnosis, providing an objective assessment of disease extent and progression, and assisting in pretreatment planning. Orbital emergencies have a spectrum of cross-sectional imaging findings in four major categories: infection, trauma, vascular disease, and inflammation. Use of a systematic approach to these entities will assist the radiologist with identifying immediate threats to vision and thereby facilitate prompt clinical management. Familiarity with the clinical presentations also improves the radiologist's diagnostic confidence and role in guiding patient care. This article reviews imaging protocols, relevant orbital anatomy, the role of CT and MR imaging, and key imaging findings of orbital emergencies that the radiologist must know. RSNA, 2017.
This work presents the results of the successful preparation of Pd nanoparticles by the polyol method and the proposed techniques of controlling their size and shape. Polyvinylpyrrolidone (PVP) stabilized Pd nanoparticles of various shapes with the largest sizes in the forms of octahedrons (24 nm), tetrahedrons (22 nm) and cubes (20 nm) have been obtained by alcohol reduction in ethanol with the addition of a hydrochloric acid catalyst. Moreover, PVP–Pd nanoparticles of well-controlled spherical shapes have also been prepared by a modified polyol method. PVP–Pd nanoparticles of cubic, octahedral, tetrahedral and spherical shapes with well-controlled size achieved by using ethylene glycol (EG) as reductant and various inorganic species were also fabricated. In particular, Pd nanorods with sizes of 47 nm and 16 nm formed due to the anisotropic growth mechanism of Pd nanoparticles were found. At the same time, tetrahedral particles of sharp shapes of 120 nm and 70 nm sizes have been observed. A high concentration of inorganic species was used to control the size and shape of the Pd nanoparticles, leading to the appearance of various irregular sizes and shapes. There was evidence of the very sharp corners and edges of tetrahedral and octahedral Pd nanoparticles or others that were formed in the clustering and combination of the seeds of smaller particles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.