SiC slurry with ultra‐high concentration up to 70 vol% was prepared using oxidized fine and coarse SiC powder mixture, and dense SiC green body with a relative density of 76% was fabricated by drying the slurry at ambient condition. Three approaches were performed to prepare highly concentrated SiC slurry; preparation of SiC powder having good dispersion behavior, optimization of the oxidation condition, and optimization of bi‐modal particle size distribution. An aqueous slurry with the solid loading up to 62 vol% could be prepared using fine (150 nm) SiC powder prepared by the mechanical alloying of Si and carbon. The surface property of the fine and coarse (10 μm) SiC powders was optimized using an oxidation treatment. The maximum solid loading of the fine SiC slurry prepared using oxidized powder was 66 vol%. By optimizing the mixing ratio of the oxidized fine and coarse SiC powder to 75:25, the solid loading of the SiC slurry could increase up to 70 vol%. The relative densities of the green bodies after drying 66, 68, and 70 vol% slurries were 69, 75.7, and 76.1%, respectively, which values were higher than those (58%) prepared by cold isostatic pressing under 200 MPa.
The discharge behavior of CuO-CuS based cathodes was investigated for use in primary alkaline cells. It was found that the Zn//CuO-CuS cells exhibited longer service life than traditional Zn//MnO 2 cells. However, their shelf life was lower due to selfdischarge reactions occurring in the cathode. The mechanism of CuO-CuS cathode self-discharge was investigated. Improved storage performance was achieved when CuS particles were encapsulated with CuO.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.