Abstract.We report on a model-based approach to system-software coengineering which is tailored to the specific characteristics of critical onboard systems for the aerospace domain. The approach is supported by a System-Level Integrated Modeling (SLIM) Language by which engineers are provided with convenient ways to describe nominal hardware and software operation, (probabilistic) faults and their propagation, error recovery, and degraded modes of operation.Correctness properties, safety guarantees, and performance and dependability requirements are given using property patterns which act as parameterized "templates" to the engineers and thus offer a comprehensible and easy-to-use framework for requirement specification. Instantiated properties are checked on the SLIM specification using state-of-the-art formal analysis techniques such as bounded SAT-based and symbolic model checking, and probabilistic variants thereof. The precise nature of these techniques together with the formal SLIM semantics yield a trustworthy modeling and analysis framework for system and software engineers supporting, among others, automated derivation of dynamic (i.e., randomly timed) fault trees, FMEA tables, assessment of FDIR, and automated derivation of observability requirements.
This paper reports on the usage of a broad palette of formal modeling and analysis techniques on a regular industrial-size design of an ultra-modern satellite platform. These efforts were carried out in parallel with the conventional software development of the satellite platform. The model itself is expressed in a formalized dialect of AADL. Its formal nature enables rigorous and automated analysis, for which the recently developed COMPASS toolset was used. The whole effort revealed numerous inconsistencies in the early design documents, and the use of formal analyses provided additional insight on discrete system behavior (comprising nearly 50 million states), on hybrid system behavior involving discrete and continuous variables, and enabled the automated generation of large fault trees (66 nodes) for safety analysis that typically are constructed by hand. The model's size pushed the computational tractability of the algorithms underlying the formal analyses, and revealed bottlenecks for future theoretical research. Additionally, the effort led to newly learned practices from which subsequent formal modeling and analysis efforts shall benefit, especially when they are injected in the conventional software development lifecycle. The case demonstrates the feasibility of fully capturing a system-level design as a single comprehensive formal model and analyze it automatically using a toolset based on (probabilistic) model checkers.
No abstract
The size and complexity of software in spacecraft is increasing exponentially, and this trend complicates its validation within the context of the overall spacecraft system. Current validation methods are labor-intensive as they rely on manual analysis, review and inspection. For future space missions, we developed -with challenging requirements from the European space industry -a novel modeling language and toolset for a (semi-)automated validation approach. Our modeling language is a dialect of AADL and enables engineers to express the system, the software, and their reliability aspects. The COMPASS toolset utilizes state-of-the-art model checking techniques, both qualitative and probabilistic, for the analysis of requirements related to functional correctness, safety, dependability and performance. Several pilot projects have been performed by industry, with two of them having focused on the system-level of a satellite platform in development. Our efforts resulted in a significant advancement of validating spacecraft designs from several perspectives, using a single integrated system model. The associated technology readiness level increased from level 1 (basic concepts and ideas) to early level 4 (laboratory-tested).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.