Neurodegenerative diseases, including Alzheimer, Parkinson, Huntington, and amyotrophic lateral sclerosis, are a prominent class of neurological diseases currently without a cure. They are characterized by an inexorable loss of a specific type of neurons. The selective vulnerability of specific neuronal clusters (typically a subcortical cluster) in the early stages, followed by the spread of the disease to higher cortical areas, is a typical pattern of disease progression. Neurodegenerative diseases share a range of molecular and cellular pathologies, including protein aggregation, mitochondrial dysfunction, glutamate toxicity, calcium load, proteolytic stress, oxidative stress, neuroinflammation, and aging, which contribute to neuronal death. Efforts to treat these diseases are often limited by the fact that they tend to address any one of the above pathological changes while ignoring others. Lack of clarity regarding a possible root cause that underlies all the above pathologies poses a significant challenge. In search of an integrative theory for neurodegenerative pathology, we hypothesize that metabolic deficiency in certain vulnerable neuronal clusters is the common underlying thread that links many dimensions of the disease. The current review aims to present an outline of such an integrative theory. We present a new perspective of neurodegenerative diseases as metabolic disorders at molecular, cellular, and systems levels. This helps to understand a common underlying mechanism of the many facets of the disease and may lead to more promising disease-modifying therapeutic interventions. Here, we briefly discuss the selective metabolic vulnerability of specific neuronal clusters and also the involvement of glia and vascular dysfunctions. Any failure in satisfaction of the metabolic demand by the neurons triggers a chain of events that precipitate various manifestations of neurodegenerative pathology.
Parkinson’s disease (PD) is the second most prominent neurodegenerative disease around the world. Although it is known that PD is caused by the loss of dopaminergic cells in substantia nigra pars compacta (SNc), the decisive cause of this inexorable cell loss is not clearly elucidated. We hypothesize that “Energy deficiency at a sub-cellular/cellular/systems level can be a common underlying cause for SNc cell loss in PD.” Here, we propose a comprehensive computational model of SNc cell, which helps us to understand the pathophysiology of neurodegeneration at the subcellular level in PD. The aim of the study is to see how deficits in the supply of energy substrates (glucose and oxygen) lead to a deficit in adenosine triphosphate (ATP). The study also aims to show that deficits in ATP are the common factor underlying the molecular-level pathological changes, including alpha-synuclein aggregation, reactive oxygen species formation, calcium elevation, and dopamine dysfunction. The model suggests that hypoglycemia plays a more crucial role in leading to ATP deficits than hypoxia. We believe that the proposed model provides an integrated modeling framework to understand the neurodegenerative processes underlying PD.
Parkinson's disease (PD) is a neurodegenerative disease associated with progressive and inexorable loss of dopaminergic cells in Substantia Nigra pars compacta (SNc). A full understanding of the underlying pathogenesis of this cell loss is unavailable, though a number of mechanisms have been indicated in the literature. A couple of these mechanisms, however, show potential for the development of radical and promising PD therapeutics. One of these mechanisms is the peculiar metabolic vulnerability of SNc cells by virtue of their excessive energy demands; the other is the excitotoxicity caused by excessive glutamate release onto SNc by an overactive Subthalamic Nucleus (STN). To investigate the latter hypothesis computationally, we developed a spiking neuron network model of the SNc-STN-GPe system. In the model, prolonged stimulation of SNc cells by an overactive STN leads to an increase in a 'stress' variable; when the stress in a SNc neuron exceeds a stress threshold the neuron dies. The model shows that the interaction between SNc and STN involves a positive feedback due to which, an initial loss of SNc cells that crosses a threshold causes a runaway effect that leads to an inexorable loss of SNc cells, strongly resembling the process of neurodegeneration. The model further suggests a link between the two aforementioned PD mechanisms: metabolic vulnerability and glutamate excitotoxicity. Our simulation results show that the excitotoxic cause of SNc cell loss in PD might be initiated by weak excitotoxicity mediated by energy deficit, followed by strong excitotoxicity, mediated by a disinhibited STN. A variety of conventional therapies are simulated in the model to test their efficacy in slowing down or arresting SNc cell loss. Among the current therapeutics,
Parkinson's disease (PD) is the second most prominent neurodegenerative disease around the world. Although it is known that PD is caused by the loss of dopaminergic cells in substantia nigra pars compacta (SNc), the decisive cause of this inexorable cell loss is not clearly elucidated. We hypothesize that "Energy deficiency at a sub-cellular/cellular/systems level can be a common underlying cause for SNc cell loss in PD." Here, we propose a comprehensive computational model of SNc cell which helps us to understand the pathophysiology of neurodegeneration at subcellular level in PD. The proposed model incorporates a rich vein of molecular dynamics related to SNc neurons such as ion channels, active pumps, ion exchangers, dopamine turnover processes, energy metabolism pathways, calcium buffering mechanisms, alpha-synuclein aggregation, Lewy body formation, reactive oxygen species (ROS) production, levodopa uptake, and apoptotic pathways. The proposed model was developed and calibrated based on experimental data. The influx of glucose and oxygen into the model was controlled, and the consequential ATP variations were observed.Apart from this, the dynamics of other molecular players (alpha-synuclein, ROS, calcium, and dopamine) known to play an important role in PD pathogenesis are also studied. The aim of the study was to see how deficits in supply of energy substrates (glucose and oxygen) lead to a deficit in ATP, and furthermore, deficits in ATP are the common factor underlying the pathological molecular-level changes including alpha-synuclein aggregation, ROS formation, calcium elevation, and dopamine dysfunction. The model suggests that hypoglycemia plays a more crucial role in leading to ATP deficits than hypoxia. We believe that the proposed model provides an integrated modelling framework to understand the neurodegenerative processes underlying PD.(1) ATP production by aerobic glucose metabolism, (2) Ca 2+ efflux by ATP-dependent calcium pump, (3) DAcyt packing into vesicles by VMAT using H + -ATPase-induced concentration gradient, (4) ATP-dependent protein degradation by UPS and autophagy, (5) ROS scavenging mechanism by glutathione, (6) α-syn* aggregation due to ROS-induced UPS impairment, (7) ROS formation due to α-syn* induced mitochondrial dysfunction, (8) ROS formation due to DAcyt autoxidation, (9) DAcyt accumulation due to α-syn* induced vesicle recycling impairment, (10) α-syn* aggregation due to DAcyt induced CMA impairment, (11) Reduced ATP production due to α-syn* induced mitochondrial dysfunction, (12) Reduced ATP production due to ROS-induced mitochondrial dysfunction, (13) Reduced ATP production due to Ca 2+ induced mitochondrial dysfunction, (14) DAcyt accumulation due to Ca 2+ induced DA synthesis, (15) Ca 2+ accumulation due to α-syn* induced dysregulation of Ca 2+ homoestasis, (16) α-syn* aggregation due to Ca 2+ induced calpain activation, (17) Reduced ATP production due to mitochondrial DNA deletions, (18) Reduced ATP production due to ROS formation induced by complex anatomical structure...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.