Radiomics is an emerging technology for imaging biomarker discovery and disease-specific personalized treatment management. This paper aims to determine the benefit of using multi-modality radiomics data from PET and MR images in the characterization breast cancer phenotype and prognosis. Eighty-four features were extracted from PET and MR images of 113 breast cancer patients. Unsupervised clustering based on PET and MRI radiomic features created three subgroups. These derived subgroups were statistically significantly associated with tumor grade (p = 2.0 × 10−6), tumor overall stage (p = 0.037), breast cancer subtypes (p = 0.0085), and disease recurrence status (p = 0.0053). The PET-derived first-order statistics and gray level co-occurrence matrix (GLCM) textural features were discriminative of breast cancer tumor grade, which was confirmed by the results of L2-regularization logistic regression (with repeated nested cross-validation) with an estimated area under the receiver operating characteristic curve (AUC) of 0.76 (95% confidence interval (CI) = [0.62, 0.83]). The results of ElasticNet logistic regression indicated that PET and MR radiomics distinguished recurrence-free survival, with a mean AUC of 0.75 (95% CI = [0.62, 0.88]) and 0.68 (95% CI = [0.58, 0.81]) for 1 and 2 years, respectively. The MRI-derived GLCM inverse difference moment normalized (IDMN) and the PET-derived GLCM cluster prominence were among the key features in the predictive models for recurrence-free survival. In conclusion, radiomic features from PET and MR images could be helpful in deciphering breast cancer phenotypes and may have potential as imaging biomarkers for prediction of breast cancer recurrence-free survival.
PURPOSE To evaluate comparative associations of breast magnetic resonance imaging (MRI) background parenchymal enhancement (BPE) and mammographic breast density with subsequent breast cancer risk. PATIENTS AND METHODS We examined women undergoing breast MRI in the Breast Cancer Surveillance Consortium from 2005 to 2015 (with one exam in 2000) using qualitative BPE assessments of minimal, mild, moderate, or marked. Breast density was assessed on mammography performed within 5 years of MRI. Among women diagnosed with breast cancer, the first BPE assessment was included if it was more than 3 months before their first diagnosis. Breast cancer risk associated with BPE was estimated using Cox proportional hazards regression. RESULTS Among 4,247 women, 176 developed breast cancer (invasive, n = 129; ductal carcinoma in situ,n = 47) over a median follow-up time of 2.8 years. More women with cancer had mild, moderate, or marked BPE than women without cancer (80% v 66%, respectively). Compared with minimal BPE, increasing BPE levels were associated with significantly increased cancer risk (mild: hazard ratio [HR], 1.80; 95% CI, 1.12 to 2.87; moderate: HR, 2.42; 95% CI, 1.51 to 3.86; and marked: HR, 3.41; 95% CI, 2.05 to 5.66). Compared with women with minimal BPE and almost entirely fatty or scattered fibroglandular breast density, women with mild, moderate, or marked BPE demonstrated elevated cancer risk if they had almost entirely fatty or scattered fibroglandular breast density (HR, 2.30; 95% CI, 1.19 to 4.46) or heterogeneous or extremely dense breasts (HR, 2.61; 95% CI, 1.44 to 4.72), with no significant interaction ( P = .82). Combined mild, moderate, and marked BPE demonstrated significantly increased risk of invasive cancer (HR, 2.73; 95% CI, 1.66 to 4.49) but not ductal carcinoma in situ (HR, 1.48; 95% CI, 0.72 to 3.05). CONCLUSION BPE is associated with future invasive breast cancer risk independent of breast density. BPE should be considered for risk prediction models for women undergoing breast MRI.
. Sickles, MD Purpose:To compare cancer recurrence outcomes on the basis of compliant semiannual versus noncompliant annual ipsilateral mammographic surveillance following breast conservation therapy (BCT). Materials and Methods:A HIPAA-compliant retrospective review was performed of post-BCT examinations from 1997 through 2008 by using a deidentified database. The Committee on Human Research did not require institutional review board approval for this study, which was considered quality assurance. Groups were classified according to compliance with institutional post-BCT protocol, which recommends semiannual mammographic examinations of the ipsilateral breast for 5 years. A compliant semiannual examination was defined as an examination with an interval of 0-9 months, although no examination had intervals less than 3 months. A noncompliant annual examination was defined as an examination with an interval of 9-18 months. Cancer recurrence outcomes were compared on the basis of the last examination interval leading to diagnosis. Results:Initially, a total of 10 750 post-BCT examinations among 2329 asymptomatic patients were identified. Excluding initial mammographic follow-up, there were 8234 examinations. Of these, 7169 examinations were semiannual with 94 recurrences detected and 1065 examinations were annual with 15 recurrences detected. There were no differences in demographic risk factors or biopsy rates. Recurrences identified at semiannual intervals were significantly less advanced than those identified at annual intervals (stage I vs stage II, P = .04; stage 0 + stage I vs stage II, P = .03). Nonsignificant findings associated with semiannual versus annual intervals included smaller tumor size (mean, 11.7 vs 15.3 mm; P = .15) and node negativity (98% vs 91%, P = .28). Conclusion:Results suggest that a semiannual interval is preferable for ipsilateral mammographic surveillance, allowing detection of a significantly higher proportion of cancer recurrences at an earlier stage than noncompliant annual surveillance.q RSNA, 20121 From the Departments of Radiology and Biomedical Imaging
Dynamic contrast-enhanced (DCE) MRI provides both morphological and functional information regarding breast tumor response to neoadjuvant chemotherapy (NAC). The purpose of this retrospective study is to test if prediction models combining multiple MRI features outperform models with single features. Four features were quantitatively calculated in each MRI exam: functional tumor volume, longest diameter, sphericity, and contralateral background parenchymal enhancement. Logistic regression analysis was used to study the relationship between MRI variables and pathologic complete response (pCR). Predictive performance was estimated using the area under the receiver operating characteristic curve (AUC). The full cohort was stratified by hormone receptor (HR) and human epidermal growth factor receptor 2 (HER2) status (positive or negative). A total of 384 patients (median age: 49 y/o) were included. Results showed analysis with combined features achieved higher AUCs than analysis with any feature alone. AUCs estimated for the combined versus highest AUCs among single features were 0.81 (95% confidence interval [CI]: 0.76, 0.86) versus 0.79 (95% CI: 0.73, 0.85) in the full cohort, 0.83 (95% CI: 0.77, 0.92) versus 0.73 (95% CI: 0.61, 0.84) in HR-positive/HER2-negative, 0.88 (95% CI: 0.79, 0.97) versus 0.78 (95% CI: 0.63, 0.89) in HR-positive/HER2-positive, 0.83 (95% CI not available) versus 0.75 (95% CI: 0.46, 0.81) in HR-negative/HER2-positive, and 0.82 (95% CI: 0.74, 0.91) versus 0.75 (95% CI: 0.64, 0.83) in triple negatives. Multi-feature MRI analysis improved pCR prediction over analysis of any individual feature that we examined. Additionally, the improvements in prediction were more notable when analysis was conducted according to cancer subtype.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.