A tremendous increase in the entry of drug delivery systems (DDSs) based on nanotechnology has been observed as a result of the ability of pharmaceutical nanotechnology to overcome the various drawbacks related to the first generation DDS. The patent period of these proprietary branded drugs gives its manufacturers sole exclusivity of their product in the market. As the patent period of these products expire, the generic players will initiate their attempts to manufacture and bring generic versions of the reference listed drug product (RLD) into the market. The regulatory approval for a generic DDS based on nanotechnology requires proving the therapeutic equivalence of the generic product with that of the RLD via pharmacodynamics clinical endpoint study on healthy subjects or patients. These studies are extremely complex, expensive and time‐consuming and may have uncertain outcomes. Furthermore, development, scale‐up and manufacturing of generic versions of nanotechnology‐based DDS involves complex steps and achieving an optimized formulation heavily depends on the process parameters during manufacturing. The information in this review addresses the said issues above and emphasizes on the possibility of using exhaustive in vitro characterization of the generic versions of nanotechnology‐based DDSs in the current market to obtain a biowaiver. Various processes involved and their importance in obtaining an optimized formulation have been described to address the issue regarding manufacturing complexities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.