Capacitive deionization (CDI) is an emerging electrochemical‐based adsorption system that has a high capability for the water reclamation with future potential towards an energy‐efficient and cost‐effective technique for industrial implementations. However, the higher cost of electrodes and poor performance limit its scale‐up, and there is a need to focus on a cost‐effective electrode towards economic impacts. Among the various waste resources, plastic sources would be the better precursor for carbonization as the plastic‐derived carbon possess enhanced surface properties and high electrochemical stability. Further, the carbonization of plastic products towards electrode minimizes greenhouse gas emissions, maintains environmental sustainability and achieves a dual benefit of circular economy with water reclamation. This paper highlights the overview of CDI, the significance of electrodes in CDI for electrosorption studies, various synthetic routes of plastic‐derived carbon, and its properties that help the researchers to focus on zero waste discharge‐based CDI process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.