The purpose of this study is to gain an understanding of the impact of model architecture on the efficacy of adversarial examples against machine learning systems implemented in self-driving applications. Prior research shows how to create and train against adversarial examples in many use cases; however, there is no definite understanding of how a machine learning model’s architecture affects the efficacy of adversarial examples. Data was collected through an experimental setting involving end-to-end self-driving models trained through behavioral cloning. Three model types were tested based on popular frameworks for machine learning algorithms dealing with images. Results showed a statistically significant difference in the impact of adversarial examples between these models. This means that certain model types and architectures are more susceptible to attacks. Therefore, the conclusion can be made that model architecture does impact the efficacy of adversarial examples; however, this is potentially limited to closed-loop, end-to-end systems in which algorithms make the entire decision. Future research should investigate what specific structure within models causes increased susceptibility to adversarial attacks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.