No abstract
Figure 1. Application prototypes and scenarios using Organic Primitives: (left to right) acid rain sensing umbrella; color changing cosmetics; saliva sensing toothbrush; apple as sensor and display; flavor augmenting utensil; flower tattoo; bionic fruit. ABSTRACTIn this paper we present Organic Primitives, an enabling toolbox that expands upon the library of input-output devices in HCI and facilitates the design of interactions with organic, fluid-based systems. We formulated color, odor and shape changing material primitives which act as sensor-actuators that convert pH signals into human-readable outputs. Food-grade organic molecules anthocyanin, vanillin, and chitosan were employed as dopants to synthesize materials which output a spectrum of colors, degrees of shape deformation, and switch between odorous and non-odorous states. We evaluated the individual output properties of our sensor-actuators to assess the rate, range, and reversibility of the changes as a function of pH 2-10. We present a design space with techniques for enhancing the functionality of the material primitives, and offer passive and computational methods for controlling the material interfaces. Finally, we explore applications enabled by Organic Primitives under four contexts: environmental, cosmetic, edible, and interspecies. Viirj Kan. Permission is granted to arxiv.org with a perpetual, non-exclusive license to distribute this article for personal, non-commercial use. Definitive version published in ACM, http://dx.
Wearable commodities are able to extend beyond the temporal span of a particular community event, offering omnipresent vehicles for producing icebreaking interaction opportunities. We introduce a novel platform, which generates social affordances to facilitate community organizers in aggregating social interaction among unacquainted, collocated members beyond initial hosted gatherings. To support these efforts, we present functional work-in-progress prototypes for Social Textiles, wearable computing textiles which enable social messaging and peripheral social awareness on non-emissive digitally linked shirts. The shirts serve as catalysts for different social depths as they reveal common interests (mediated by community organizers), based on the physical proximity of users. We provide 3 key scenarios, which demonstrate the user experience envisioned with our system. We present a conceptual framework, which shows how different community organizers across domains such as universities, brand communities and digital self-organized communities can benefit from our technology.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.