Generalized Linear Latent Variable Models (GLLVMs) are a powerful class of models for understanding the relationships among multiple, correlated responses. Estimation however presents a major challenge, as the marginal likelihood does not possess a closed form for non-normal responses. We propose a variational approximation (VA) method for estimating GLLVMs. For the common cases of binary, ordinal, and overdispersed count data, we derive fully closed form approximations to the marginal log-likelihood function in each case. Compared to other methods such as the expectation-maximization algorithm, estimation using VA is fast and straightforward to implement. Predictions of the latent variables and associated uncertainty estimates are also obtained as part of the estimation process. Simulations show that VA estimation performs similar to or better than some currently available methods, both at ACCEPTED MANUSCRIPT predicting the latent variables and estimating their corresponding coefficients. They also show that VA estimation offers dramatic reductions in computation time particularly if the number of correlated responses is large relative to the number of observational units. We apply the variational approach to two datasets, estimating GLLVMs to understanding the patterns of variation in youth gratitude and for constructing ordination plots in bird abundance data. R code for performing VA estimation of GLLVMs is available online.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.