Plastic surgery is considered as a challenging research issue in the field of face recognition. Nevertheless, it has yet to be studied from theoretical and experimental perspectives. In this study, the authors proposed a facial recognition system for recognising faces after plastic surgery, which fuses the scores of two feature‐based and texture‐based algorithms. The feature based algorithm is the image GIST global descriptor and the texture‐based algorithm is the local binary pattern (LBP) of silence points. First, the local texture descriptor LBP was applied over a set of key points (silence points) in the face image rather than applying it over the entire face area. This proposed feature set is based on the assumption that only those LBP patterns with certain meaning, such as an edge or corner, will be useful for recognising faces that have undergone plastic surgery. The second set of features was extracted using a global descriptor, which is the GIST descriptor, to obtain a basic and a subordinate level description of the perceptual dimension. The performance of the proposed system surpassed the performance of a number of state‐of‐the‐art face recognition after plastic surgery, with a maximum verification accuracy of more than 91%.
This work presents an approach for combining texture and shape feature sets towards age-invariant face recognition. Physiological studies have proven that the human visual system can recognise familiar faces at different ages from the face outline alone. Based on this scientific fact, the phase congruency features for shape analysis were adopted to produce a face edge map. This was beneficial in tracking the craniofacial growth pattern for each subject. Craniofacial growth is common during childhood years, but after the age of 18, the texture variations start to show as the effect of facial aging. Therefore, in order to handle such texture variations, a variance of the well-known local binary pattern (LBP) texture descriptor, known as LBP variance was adopted. The results showed that fusing the shape and the texture features set yielded better performance than the individual performance of each feature set. Moreover, the individual verification accuracy for each feature set was improved when they were transformed to a kernel discriminative common vectors presentation. The system achieved an overall verification accuracy of above 93% when it was evaluated over the FG-NET face aging database.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.