Aicardi–Goutières syndrome is an inflammatory disease occurring due to mutations in any of TREX1, RNASEH2A, RNASEH2B, RNASEH2C, SAMHD1, ADAR or IFIH1. We report on 374 patients from 299 families with mutations in these seven genes. Most patients conformed to one of two fairly stereotyped clinical profiles; either exhibiting an in utero disease-onset (74 patients; 22.8% of all patients where data were available), or a post-natal presentation, usually within the first year of life (223 patients; 68.6%), characterized by a sub-acute encephalopathy and a loss of previously acquired skills. Other clinically distinct phenotypes were also observed; particularly, bilateral striatal necrosis (13 patients; 3.6%) and non-syndromic spastic paraparesis (12 patients; 3.4%). We recorded 69 deaths (19.3% of patients with follow-up data). Of 285 patients for whom data were available, 210 (73.7%) were profoundly disabled, with no useful motor, speech and intellectual function. Chilblains, glaucoma, hypothyroidism, cardiomyopathy, intracerebral vasculitis, peripheral neuropathy, bowel inflammation and systemic lupus erythematosus were seen frequently enough to be confirmed as real associations with the Aicardi-Goutieres syndrome phenotype. We observed a robust relationship between mutations in all seven genes with increased type I interferon activity in cerebrospinal fluid and serum, and the increased expression of interferon-stimulated gene transcripts in peripheral blood. We recorded a positive correlation between the level of cerebrospinal fluid interferon activity assayed within one year of disease presentation and the degree of subsequent disability. Interferon-stimulated gene transcripts remained high in most patients, indicating an ongoing disease process. On the basis of substantial morbidity and mortality, our data highlight the urgent need to define coherent treatment strategies for the phenotypes associated with mutations in the Aicardi–Goutières syndrome-related genes. Our findings also make it clear that a window of therapeutic opportunity exists relevant to the majority of affected patients and indicate that the assessment of type I interferon activity might serve as a useful biomarker in future clinical trials.
We have utilized Caenorhabditis elegans to study human methylmalonic acidemia. Using bioinformatics, a full complement of mammalian homologues for the conversion of propionyl-CoA to succinyl-CoA in the genome of C. elegans, including propionyl-CoA carboxylase subunits A and B (pcca-1, pccb-1), methylmalonic acidemia cobalamin A complementation group (mmaa-1), co(I) balamin adenosyltransferase (mmab-1), MMACHC (cblc-1), methylmalonyl-CoA epimerase (mce-1) and methylmalonyl-CoA mutase (mmcm-1) were identified. To verify predictions that the entire intracellular adenosylcobalamin metabolic pathway existed and was functional, the kinetic properties of the C. elegans mmcm-1 were examined. RNA interference against mmcm-1, mmab-1, mmaa-1 in the presence of propionic acid revealed a chemical phenotype of increased methylmalonic acid; deletion mutants of mmcm-1, mmab-1 and mce-1 displayed reduced 1-[ 14 C]-propionate incorporation into macromolecules. The mutants produced increased amounts of methylmalonic acid in the culture medium, proving that a functional block in the pathway caused metabolite accumulation. Lentiviral delivery of the C. elegans mmcm-1 into fibroblasts derived from a patient with mut o class methylmalonic acidemia could partially restore propionate flux. The C. elegans mce-1 deletion mutant demonstrates for the first time that a lesion at the racemase step of methylmalonyl-CoA metabolism can functionally impair flux through the methylmalonyl-CoA mutase pathway and suggests that malfunction of MCEE may cause methylmalonic acidemia in humans. The C. elegans system we describe represents the first lower metazoan model organism of mammalian propionate spectrum disorders and demonstrates that mass spectrometry can be employed to study a small molecule chemical phenotype in C. elegans RNAi and deletion mutants.
A pencil core with an intact pencil tip was excised from the thigh of a 60-year-old male 53 years after a puncture wound. Histologic examination of the excised pencil core and the surrounding tissue revealed a foreign body reaction with abundant entrapped dark black pigment and chronic reparative changes, including dense sclerosis and focal granulation tissue formation.
The role of virulent bacteriophages in staphylococcal colonization of the human anterior nares is not known. This report of lytic bacteriophages against Staphylococcus epidermidis in the anterior nares of 5.5% of human subjects (n ؍ 202) suggests their potential role in modulating staphylococcal colonization in this ecological niche.
We report here the complete genome sequence of a virulent Staphylococcus epidermidis siphophage, phage 6ec, isolated from the anterior nares of a human. This viral genome is 93,794 bp in length, with a 3′ overhang cos site of 10 nucleotides, and it codes for 142 putative open reading frames.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.