In smokers' lungs, excessive mucus clogs small airways, impairing respiration and promoting recurrent infection. A breakthrough in understanding this pathology was the realization that smoke could directly stimulate mucin synthesis in lung epithelial cells and that this phenomenon was dependent on the cell surface receptor for epidermal growth factor, EGFR. Distal steps in the smoke-triggered pathway have not yet been determined. We report here that the predominant airway mucin (MUC5AC) undergoes transcriptional up-regulation in response to tobacco smoke; this is mediated by an AP-1-containing response element, which binds JunD and Fra-2. These transcription factors require phosphorylation by upstream kinases JNK and ERK, respectively. Whereas ERK activation results from the upstream activation of EGFR, JNK activation is chiefly EGFR-independent. Our experiments demonstrated that smoke activates JNK via a Src-dependent, EGFRindependent signaling cascade initiated by smoke-induced reactive oxygen species. Taken together with our earlier results, these data indicate that the induction of mucin by smoke is the combined effect of mutually independent, reactive oxygen species activation of both EGFR and JNK.The primary cause of morbidity in chronic bronchitis is mucin overproduction, a phenomenon for which the molecular pathogenesis is unknown. Inflammatory cells are abundant in smokers' airways (1-3) and are capable of stimulating mucin production (4 -7), suggesting that at least some of the excessive mucin in smokers' lungs is secondary to inflammation.In addition, however, smoke itself can induce mucin synthesis in lung cells (8,9). The question of how this occurs is complex in that smoke, a composite of irritant molecules including acetaldehyde, hydroquinone, formaldehyde, benzo-[a]pyrene, cresol, nicotine, catechol, acrolein, coumarin, anthracene, nitrogen oxides, and heavy metals (10, 11) may act on lung epithelial cells in diverse ways. For example, the induction of cytochrome P450 by tobacco smoke (12) is mediated by binding of the aryl hydrocarbon nuclear receptor to a dioxin response element in the 5Ј-flank of the gene, but the induction of the ␥-glutamylcysteine synthetase heavy subunit (␥-GCS-HS) gene is mediated by the binding of a c-Jun/c-Jun homodimer to an AP-1-like response element (13).Previous reports have implicated the receptor for epidermal growth factor (EGFR) 1 in the induction of mucin gene MUC5AC by smoke (9). Consistent with a role for EGFR in mucin induction, an EGF response element has been identified 200 bp upstream of the MUC5AC gene (14). The response of this element to EGFR ligands EGF and transforming growth factor-␣ is mediated by Sp1. One might predict from these data that the induction of MUC5AC by smoke would depend on interaction between the EGF response element at Ϫ200 bp and Sp1.In contrast, in the present study we show that MUC5AC is controlled principally by a smoke response element ϳ3 kb upstream of the EGF response element. This element is AP-1-dependent and is bound by Ju...
BackgroundLung cancer is the leading cause of cancer death in the world, and greater than 90% of lung cancers are cigarette smoke-related. Current treatment options are inadequate, because the molecular basis of cigarette-induced lung cancer is poorly understood.Methodology/Principal FindingsHere, we show that human primary or immortalized bronchial epithelial cells exposed to cigarette smoke for eight days in culture rapidly proliferate, show anchorage-independent growth, and form tumors in nude mice. Using this model of the early stages of smoke-induced tumorigenesis, we examined the molecular changes leading to lung cancer. We observed that the embryonic signaling pathways mediated by Hedgehog and Wnt are activated by smoke. Pharmacological inhibition of these pathways blocked the transformed phenotype.Conclusions/SignificanceThese experiments provide a model in which the early stages of smoke-induced tumorigenesis can be elicited, and should permit us to identify molecular changes driving this process. Results obtained so far indicate that smoke-induced lung tumors are driven by activation of two embryonic regulatory pathways, Hedgehog (Hh) and Wnt. Based on the current and emerging availability of drugs to inhibit Hh and Wnt signaling, it is possible that an understanding of the role of Hh and Wnt in lung cancer pathogenesis will lead to the development of new therapies.
Advances in the field of tumor biology have identified that tumor cells co-opt developmental signaling pathways of embryonic stem cells and thus gain the ability to proliferate, differentiate and alter cell-cell interactions. One such pathway is the Wnt/b-catenin signaling pathway. High levels of EMMPRIN expression have been shown to correlate with poor prognosis and metastasis in a broad range of tumors. Although a variety of functions are attributed to EMMPRIN in tumorigenesis, the specific mechanism(s) through which it can exert its effects have not been elucidated, until now. In this study, we identify EMMPRIN as a novel regulator of the canonical Wnt/ b-catenin signaling pathway in lung cancer. Increasing EMMPRIN expression levels in lung cancer epithelial cells upregulated the b-catenin signaling pathway and silencing EMMPRIN inhibited b-catenin signaling, cell migration, proliferation, anchorage-independent growth and tumor growth in a mouse tumor xenograft model. These results provide a compelling rationale for targeting EMMPRIN for anticancer therapies. Understanding the molecular mechanisms driving EMMPRIN-induced lung tumorigenesis will provide enormous benefits in developing new therapeutic treatments for this and other forms of cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.