In response to current strict laws aiming to reduce motor vehicle emissions, more and more research projects are being carried out in order to enhance the flow of automotive catalysts. There have been substantial efforts to further refine the SCR technology (selective catalytic reduction) for diesel-powered vehicles. Furthermore, only a little distance from the catalytic input between the exhaust system is available for a mobile SCR system. This therefore leads to an insufficient urea residence period, and evaporation and thermolysis at the catalyst entry cannot therefore be completed. This can lead to substantial secondary ammonia and isocyanic acid emissions. Therefore, fast thermolysis, effective ammonia blend with exhaust gas and reduction of ammonia slip are crucial factors for the deployment of SCR technology on cars. The Computational Fluid Dynamics (CFD) approach is used for optimizing the exhaust gas flow inside the existing catalyst by changing intake cone designs which is intended to be used on Euro VI/Bharat Stage-VI emissions legislation compliant heavy-duty diesel engines in India. This study is divided in to two parts. The first part of the study deals with finding the optimized ammonia injector location, and in the second part, the proposed inlet cone design’s flow velocity uniformity index is estimated and compared with that of the existing SCR catalyst model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.