Introduction:
Type 1 diabetes mellitus (T1DM) is associated with various autoimmune disorders like celiac disease, thyroid disorder, adrenal failure, etc. However, how common is this association in Indian children is not clearly known.
Objective:
To assess the prevalence of other coexisting autoimmune disorders in children with T1DM.
Materials and Methods:
In this cross-sectional study, patients requiring insulin and ketosis-prone diabetic and with history of diabetic ketoacidosis/undetectable fasting C-peptide levels were included. Beside demographic and clinical data, detailed biochemistry evaluations were performed. Celiac disease was diagnosed as per the ESPGHAN diagnostic criteria. ACTH stimulation test was done to confirm the adrenal insufficiency in patients with basal serum cortisol <5 μg/dL. Thyroid function test (TSH) and anti-TPO antibody were assessed in all patients. Screening for other autoimmune disorders was done only when clinically indicated or symptoms or family history was suggestive of presence of such disorder.
Results:
Among 150 patients enrolled, 64.66% were males and mean age was 13.48 ± 3.29 years (range 3–18 years). Mean age at diagnosis of T1DM was 10.0 ± 3.63 years and duration of diabetes was 3.46 ± 3.18 years. The prevalence of antibodies positive against autoimmune diseases was anti-tTG IgA (20.7%), anti-TPO (33.7%), anti-CCP ab (1.3%), and ANA (0.7%). Significantly higher proportion of females had raised anti-TPO antibodies than males (47.2% vs. 25.8%,
P
= 0.006). Celiac disease was most common association (24.8%) followed by hypothyroidism (14.1%) and Grave's disease (3.3%). Significantly higher proportion of females had hypothyroidism than males (25.0% vs. 8.2%, respectively,
P
= 0.005). Prevalence of raised anti-tTG and anti-TPO did not differ significantly by the age (
P
= 0.841 and
P
= 0.067) or duration of T1DM (
P
= 0.493 and
P
= 0.399).
Conclusion:
In this part of country, celiac disease, hypothyroidism, and Graves's disease are common associations in children with T1DM.
Background:Human height is a classic polygenic trait and currently available data explains only 10% of the phenotypic variation in height. Almost 60%–80% of the children coming to pediatric and endocrinology outpatient department for the evaluation of short stature are still labeled as idiopathic.Objectives:The aim of this study is to identify various chromosomal alterations causing idiopathic short stature (ISS) and short stature with dysmorphic features not pertaining to known genetic syndromes.Materials and Methods:After exclusion of all nutritional, systemic, endocrine, and syndromic causes of short stature, 19 patients with height <2 standard deviation scores were subjected to chromosomal microarray (CMA) study using Affymetrix CytoScan 750K array and CMA Scanner 3000 platform.Results:We identified total 61 copy-number variant (CNV) and polymorphs (33 gains, 11 loss, and 17 gain-mosaics) not described as normal variants in database of genomic variations. We identified SHOX haploinsufficiency as a cause of short stature in two patients, whereas one patient was gain-mosaic for SHOX. All three had normal conventional karyotype. One of these patients also had deletion of PAX3, which could be the cause of both short stature and associated mild intellectual impairment in this patient. We also found a long noncoding RNA, namely, KIAA0125 and a pseudogene ADAM6 in 18 out of our 19 patients which might have a regulatory role.Conclusion:This study shows that CMA is a very promising tool for the identification of pathogenic CNVs in patients with ISS. It can also help to identify novel genes controlling height and can open up new insight into pathophysiologic mechanisms underlying ISS, and thus may help to unfold new therapeutic targets for treatment of this condition. The association of CNV having genes for long noncoding RNAs, such as KIAA0125 and pseudogene such as ADAM6 with ISS suggest that they may play a role in controlling the expression of height-related genes and it needs further investigations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.