Similarity solutions are obtained for one-dimensional flow under the action of monochromatic radiation behind a cylindrical magnetogasdynamic shock wave propagating in a non-ideal gas in presence of an axial magnetic field. The initial density of the medium and initial magnetic field are assumed to be constant. It is investigated that the presence of the magnetic field or the non-idealness of the gas decays the shock wave, and when the initial magnetic field is strong the non-idealness of the gas affects the velocity and pressure profiles significantly. Also, it is observed that the flow-variables behind the shock are affected significantly, by an increase in the parameter of radiation, when the initial magnetic field is strong. It is, therefore, inferred that the effect of the non-idealness of the gas and of the monochromatic radiation on the shock propagation become more significant when the strength of the initial magnetic field is increased.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.