Improving the functional stability of shape memory alloys (SMAs), which undergo a reversible martensitic transformation, is critical for their applications and remains a central research theme driving advances in shape memory technology. By using a thin‐film composition‐spread technique and high‐throughput characterization methods, the lattice parameters of quaternary Ti–Ni–Cu–Pd SMAs and the thermal hysteresis are tailored. Novel alloys with near‐zero thermal hysteresis, as predicted by the geometric non‐linear theory of martensite, are identified. The thin‐film results are successfully transferred to bulk materials and near‐zero thermal hysteresis is observed for the phase transformation in bulk alloys using the temperature‐dependent alternating current potential drop method. A universal behavior of hysteresis versus the middle eigenvalue of the transformation stretch matrix is observed for different alloy systems. Furthermore, significantly improved functional stability, investigated by thermal cycling using differential scanning calorimetry, is found for the quaternary bulk alloy Ti50.2Ni34.4Cu12.3Pd3.1.
We demonstrate a new method for the direct conversion of heat to electricity using the recently discovered multiferroic alloy, Ni45Co5Mn40Sn101. This alloy undergoes a low hysteresis, reversible martensitic phase transformation from a nonmagnetic martensite phase to a strongly ferromagnetic austenite phase upon heating. When biased by a suitably placed permanent magnet, heating through the phase transformation causes a sudden increase of the magnetic moment to a large value. As a consequence of Faraday’s law of induction, this drives a current in a surrounding circuit. Theory predicts that under optimal conditions the performance compares favorably with the best thermoelectrics. Because of the low hysteresis of the alloy, a promising area of application of this concept appears to be energy conversion at small ΔT, suggesting a possible route to the conversion of the vast amounts of energy stored on earth at small temperature difference. We postulate other new methods for the direct conversion of heat to electricity suggested by the underlying theory.
The cofactor conditions, introduced in James and Zhang (2005), are conditions of compatibility between phases in martensitic materials. They consist of three subconditions: i) the condition that the middle principal stretch of the transformation stretch tensor U is unity (λ 2 = 1), ii) the condition a · U cof(U 2 − I)n = 0, where the vectors a and n are certain vectors arising in the specification of the twin system, and iii) the inequality trU 2 + det U 2 − (1/4)|a| 2 |n| 2 ≥ 2. Together, these conditions are necessary and sufficient for the equations of the crystallographic theory of martensite to be satisfied for the given twin system but for any volume fraction f of the twins, 0 ≤ f ≤ 1. This contrasts sharply with the generic solutions of the crystallographic theory which have at most two such volume fractions for a given twin system of the form f * and 1 − f * . In this paper we simplify the form of the cofactor conditions, we give their specific forms for various symmetries and twin types, we clarify the extent to which the satisfaction of the cofactor conditions for one twin system implies its satisfaction for other twin systems. In particular, we prove that the satisfaction of the cofactor conditions for either Type I or Type II twins implies that there are solutions of the crystallographic theory using these twins that have no elastic transition layer. We show that the latter further implies macroscopically curved, transition-layer-free austenite/martensite interfaces for Type I twins, and planar transitionlayer-free interfaces for Type II twins which nevertheless permit significant flexibility (many deformations) of the martensite. We identify some real material systems nearly satisfying the cofactor conditions. Overall, the cofactor conditions are shown to dramatically increase the number of deformations possible in austenite/martensite mixtures without the presence of elastic energy needed for coexistence. In the context of earlier work that links the special case λ 2 = 1 to reversibility (Cui et al., 2006;Zhang et al., 2009;Zarnetta et al., 2010), it is expected that satisfaction of the cofactor conditions for Type I or Type II twins will lead to further lowered hysteresis and improved resistance to transformational fatigue in alloys whose composition has been tuned to satisfy these conditions.
The Heusler-derived multiferroic alloy Ni 50-x Co x Mn 40 Sn 10 has recently been shown to exhibit, at just above room temperature, a highly reversible martensitic phase transformation with an unusually large magnetization change. In this work the nature of the magnetic ordering above and below this transformation has been studied in detail in the critical composition range x = 6-8 via temperature-dependent (5-600 K) magnetometry and Small-Angle Neutron Scattering (SANS). We observe fairly typical paramagnetic to long-range-ordered ferromagnetic phase transitions on cooling to 420-430 K, with the expected critical spin fluctuations, followed by first-order martensitic phase transformations to a non-ferromagnetic state below 360-390 K. The static magnetization reveals complex magnetism in this low temperature non-ferromagnetic 2 phase including a Langevin-like field dependence, distinct spin freezing near 60 K, and significant exchange bias effects, consistent with superparamagnetic blocking of ferromagnetic clusters of nanoscopic dimensions. We demonstrate that these spin clusters, whose existence has been hypothesized in a variety of martensitic alloys exhibiting competition between ferromagnetic and antiferromagnetic exchange interactions, can be directly observed by SANS.The scattering data are consistent with a liquid-like spatial distribution of interacting magnetic clusters with a mean center-to-center spacing of 12 nm. Considering the behavior of the superparmagnetism, cooling-field and temperature-dependent exchange bias, and magnetic SANS, we discuss in detail the physical form and origin of these spin clusters, their inter-cluster interactions, the nature of the ground state magnetic ordering in the martensitic phase, and the implications for our understanding of such alloy systems.
India has experienced significant Land-Use and Land-Cover Change (LULCC) over the past few decades. In this context, careful observation and mapping of LULCC using satellite data of high to medium spatial resolution is crucial for understanding the long-term usage patterns of natural resources and facilitating sustainable management to plan, monitor and evaluate development. The present study utilizes the satellite images to generate national level LULC maps at decadal intervals for 1985, 1995 and 2005 using onscreen visual interpretation techniques with minimum mapping unit of 2.5 hectares. These maps follow the classification scheme of the International Geosphere Biosphere Programme (IGBP) to ensure compatibility with other global/regional LULC datasets for Remote Sens. 2015, 7 2403 comparison and integration. Our LULC maps with more than 90% overall accuracy highlight the changes prominent at regional level, i.e., loss of forest cover in central and northeast India, increase of cropland area in Western India, growth of peri-urban area, and relative increase in plantations. We also found spatial correlation between the cropping area and precipitation, which in turn confirms the monsoon dependent agriculture system in the country. On comparison with the existing global LULC products (GlobCover and MODIS), it can be concluded that our dataset has captured the maximum cumulative patch diversity frequency indicating the detailed representation that can be attributed to the on-screen visual interpretation technique. Comparisons with global LULC products (GlobCover and MODIS) show that our dataset captures maximum landscape diversity, which is partly attributable to the on-screen visual interpretation techniques. We advocate the utility of this database for national and regional studies on land dynamics and climate change research. The database would be updated to 2015 as a continuing effort of this study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.