In 1935, Schrodinger attempted to demonstrate the limitations of quantum mechanics using a thought experiment in which a cat is put in a quantum superposition of alive and dead states. The idea remained an academic curiosity until the 1980s when it was proposed that, under suitable conditions, a macroscopic object with many microscopic degrees of freedom could behave quantum mechanically, provided that it was sufficiently decoupled from its environment. Although much progress has been made in demonstrating the macroscopic quantum behaviour of various systems such as superconductors, nanoscale magnets, laser-cooled trapped ions, photons in a microwave cavity and C60 molecules, there has been no experimental demonstration of a quantum superposition of truly macroscopically distinct states. Here we present experimental evidence that a superconducting quantum interference device (SQUID) can be put into a superposition of two magnetic-flux states: one corresponding to a few microamperes of current flowing clockwise, the other corresponding to the same amount of current flowing anticlockwise.
We have measured and propose a model for switching rates in hysteretic DC-SQUID in the regime where phase diffusion processes start to occur. We show that the switching rates in this regime are smaller than the rates given by Kramers' formula due to retrapping of Josephson phase. The retrapping process, which is affected by the frequency dependent impedance of the environment of the DC-SQUID, leads to a peaked second moment of the switching distribution as a function of temperature. The temperature where the peaks occur are proportional to the critical current of the DC-SQUID.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.