The activity of the transcription factor nuclear factor-erythroid 2 p45-derived factor 2 (NRF2) is orchestrated and amplified through enhanced transcription of antioxidant and antiinflammatory target genes. The present study has characterized a triazole-containing inducer of NRF2 and elucidated the mechanism by which this molecule activates NRF2 signaling. In a highly selective manner, the compound covalently modifies a critical stress-sensor cysteine (C151) of the E3 ligase substrate adaptor protein Kelch-like ECH-associated protein 1 (KEAP1), the primary negative regulator of NRF2. We further used this inducer to probe the functional consequences of selective activation of NRF2 signaling in Huntington's disease (HD) mouse and human model systems. Surprisingly, we discovered a muted NRF2 activation response in human HD neural stem cells, which was restored by genetic correction of the disease-causing mutation. In contrast, selective activation of NRF2 signaling potently repressed the release of the proinflammatory cytokine IL-6 in primary mouse HD and WT microglia and astrocytes. Moreover, in primary monocytes from HD patients and healthy subjects, NRF2 induction repressed expression of the proinflammatory cytokines IL-1, IL-6, IL-8, and TNFα. Together, our results demonstrate a multifaceted protective potential of NRF2 signaling in key cell types relevant to HD pathology.
Several oxygenated hydrocarbons, including acetylated sugars, poly(propylene glycol), and oligo(vinyl acetate), have been used to generate CO2-soluble ionic surfactants. Surfactants with vinyl acetate tails yielded the most promising results, exhibiting levels of CO2 solubility comparable to those associated with fluorinated ionic surfactants. For example, a sodium sulfate with single, oligomeric vinyl acetate (VAc) tails consisting of 10 VAc repeat units was 7 wt % soluble in CO2 at 25 degrees C and 48 MPa. Upon introduction of water to these systems, only surfactants with the oligomeric vinyl acetate tails exhibited spectroscopic evidence of a polar environment that was capable of solubilizing the methyl orange into the CO2-rich phase. For example, a single-phase solution of CO2, 0.15 wt % sodium bis(vinyl acetate)8 sulfosuccinate, and water, at water loading (W) values ranging from 10 to 40 at 25 degrees C and 34.5 MPa, exhibited a methyl orange peak at 423 nm. This result indicated that the core of a reverse micelle provided a microenvironment with a polarity similar to that of methanol. Quantum chemical calculations indicate that the acetylated sugars may be too hydrophilic to readily form reverse micelles, whereas the VAc-based surfactants appear to have the correct balance of hydrophilic and hydrophobic forces necessary to form reverse micelles.
[structure: see text] Acetylated sugars derivatives exhibit high solubility in liquid and supercritical carbon dioxide (scCO(2)). Peracetylated sorbitol and beta-D-galactose are soluble under mild conditions in scCO(2), high pressures are required to dissolve peracetylated beta-cyclodextrin, and peracetoxyalkyl chains impart CO(2)-solubility to amides.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.