Abstract. Sensorimotor processing occurs in a highly distributed manner in the mammalian neocortex. The spatiotemporal dynamics of electrical activity in the dorsal mouse neocortex can be imaged using voltagesensitive dyes (VSDs) with near-millisecond temporal resolution and ∼100-μm spatial resolution. Here, we trained mice to lick a water reward spout after a 1-ms deflection of the C2 whisker, and we imaged cortical dynamics during task execution with VSD RH1691. Responses to whisker deflection were highly dynamic and spatially highly distributed, exhibiting high variability from trial to trial in amplitude and spatiotemporal dynamics. We differentiated trials based on licking and whisking behavior. Hit trials, in which the mouse licked after the whisker stimulus, were accompanied by overall greater depolarization compared to miss trials, with the strongest hit versus miss differences being found in frontal cortex. Prestimulus whisking decreased behavioral performance by increasing the fraction of miss trials, and these miss trials had attenuated cortical sensorimotor responses. Our data suggest that the spatiotemporal dynamics of depolarization in mouse sensorimotor cortex evoked by a single brief whisker deflection are subject to important behavioral modulation during the execution of a simple, learned, goal-directed sensorimotor transformation.
Single cell/nucleus technologies are powerful tools to study cell type-specific expression in the human brain, but most large-scale efforts have focused on characterizing cortical brain regions and their constituent cell types. However, additional brain regions - particularly those embedded in basal ganglia and limbic circuits - play important roles in neuropsychiatric disorders and addiction, suggesting a critical need to better understand their molecular characteristics. We therefore created a single-nucleus RNA-sequencing (snRNA-seq) resource across five human brain regions (hippocampus, HPC; dorsolateral prefrontal cortex, DLPFC; subgenual anterior cingulate cortex, sACC; nucleus accumbens, NAc; and amygdala, AMY), with emphasis on the NAc and AMY, given their involvement in reward signaling and emotional processing. We identified distinct and potentially novel neuronal subpopulations, which we validated by smFISH for various subclasses of NAc interneurons and medium spiny neurons (MSNs). We additionally benchmarked these datasets against published datasets for corresponding regions in rodent models to define cross-species convergence and divergence across analogous cell subclasses. We characterized the transcriptomic architecture of regionally-defined neuronal subpopulations, which revealed strong patterns of similarities in specific neuronal subclasses across the five profiled regions. Finally, we measured genetic associations between risk for psychiatric disease and substance use behaviors with each of the regionally-defined cell types. This analysis further supported NAc and AMY involvement in risk for psychiatric illness by implicating specific neuronal subpopulations, and highlighted potential involvement of an MSN population associated with stress signaling in genetic risk for substance use.
We demonstrate a highly sensitive mobile phone based spectrometer that has potential to detect cancerous skin lesions in a rapid, non-invasive manner. Earlier reports of low cost spectrometers utilize the camera of the mobile phone to image the field after moving through a diffraction grating. These approaches are inherently limited by the closed nature of mobile phone image sensors and built in optical elements. The system presented uses a novel integrated grating and sensor that is compact, accurate and calibrated. Resolutions of about 10 nm can be achieved. Additionally, UV and visible LED excitation sources are built into the device. Data collection and analysis is simplified using the wireless interfaces and logical control on the smart phone. Furthermore, by utilizing an external sensor, the mobile phone camera can be used in conjunction with spectral measurements. We are exploring ways to use this device to measure endogenous fluorescence of skin in order to distinguish cancerous from non-cancerous lesions with a mobile phone based dermatoscope.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.