According to Darwin’s theory, endless evolution leads to a revolution. One such example is the Clustered Regularly Interspaced Palindromic Repeats (CRISPR)–Cas system, an adaptive immunity system in most archaea and many bacteria. Gene editing technology possesses a crucial potential to dramatically impact miscellaneous areas of life, and CRISPR–Cas represents the most suitable strategy. The system has ignited a revolution in the field of genetic engineering. The ease, precision, affordability of this system is akin to a Midas touch for researchers editing genomes. Undoubtedly, the applications of this system are endless. The CRISPR–Cas system is extensively employed in the treatment of infectious and genetic diseases, in metabolic disorders, in curing cancer, in developing sustainable methods for fuel production and chemicals, in improving the quality and quantity of food crops, and thus in catering to global food demands. Future applications of CRISPR–Cas will provide benefits for everyone and will save countless lives. The technology is evolving rapidly; therefore, an overview of continuous improvement is important. In this review, we aim to elucidate the current state of the CRISPR–Cas revolution in a tailor-made format from its discovery to exciting breakthroughs at the application level and further upcoming trends related to opportunities and challenges including ethical concerns.
The disposal of municipal solid waste (MSW) directly at landfills or open dump areas, without segregation and treatment, is a significant concern due to its hazardous contents of antibiotic-resistant bacteria (ARB), antibiotic resistance genes (ARGs), and metal resistance genes (MGEs). The released leachate from landfills greatly effects the soil physicochemical, biological, and groundwater properties associated with agricultural activity and human health. The abundance of ARB, ARGs, and MGEs have been reported worldwide, including MSW landfill sites, animal husbandry, wastewater, groundwater, soil, and aerosol. This review elucidates the occurrence and abundance of ARB, ARGs, and MRGs, which are regarded as emerging contaminants (ECs). Recently, ECs have received global attention because of their prevalence in leachate as a substantial threat to environmental and public health, including an economic burden for developing nations. The present review exclusively discusses the demands to develop a novel eco-friendly management strategy to combat these global issues. This review also gives an intrinsic discussion about the insights of different aspects of environmental and public health concerns caused due to massive leachate generation, the abundance of antibiotics resistance (AR), and the effects of released leachate on the various environmental reservoirs and human health. Furthermore, the current review throws light on the source and fate of different ECs of landfill leachate and their possible impact on the nearby environments (groundwater, surface water, and soil) affecting human health. The present review strongly suggests the demand for future research focuses on the advancement of the removal efficiency of contaminants with the improvement of relevant landfill management to reduce the potential effects of disposable waste. We propose the necessity of the identification and monitoring of potential environmental and human health risks associated with landfill leachate contaminants.
Water scarcity is one of the major problems in the world and millions of people have no access to freshwater. Untreated wastewater is widely used for agriculture in many countries. This is one of the world-leading serious environmental and public health concerns. Instead of using untreated wastewater, treated wastewater has been found more applicable and ecofriendly option. Moreover, environmental toxicity due to solid waste exposures is also one of the leading health concerns. Therefore, intending to combat the problems associated with the use of untreated wastewater, we propose in this review a multidisciplinary approach to handle wastewater as a potential resource for use in agriculture. We propose a model showing the efficient methods for wastewater treatment and the utilization of solid wastes in fertilizers. The study also points out the associated health concern for farmers, who are working in wastewater-irrigated fields along with the harmful effects of untreated wastewater. The consumption of crop irrigated by wastewater has leading health implications also discussed in this review paper. This review further reveals that our current understanding of the wastewater treatment and use in agriculture with addressing advancements in treatment methods has great future possibilities.
Globally, substantial research into endophytic microbes is being conducted to increase agricultural and environmental sustainability. Endophytic microbes such as bacteria, actinomycetes, and fungi inhabit ubiquitously within the tissues of all plant species without causing any harm or disease. Endophytes form symbiotic relationships with diverse plant species and can regulate numerous host functions, including resistance to abiotic and biotic stresses, growth and development, and stimulating immune systems. Moreover, plant endophytes play a dominant role in nutrient cycling, biodegradation, and bioremediation, and are widely used in many industries. Endophytes have a stronger predisposition for enhancing mineral and metal solubility by cells through the secretion of organic acids with low molecular weight and metal-specific ligands (such as siderophores) that alter soil pH and boost binding activity. Finally, endophytes synthesize various bioactive compounds with high competence that are promising candidates for new drugs, antibiotics, and medicines. Bioprospecting of endophytic novel secondary metabolites has given momentum to sustainable agriculture for combating environmental stresses. Biotechnological interventions with the aid of endophytes played a pivotal role in crop improvement to mitigate biotic and abiotic stress conditions like drought, salinity, xenobiotic compounds, and heavy metals. Identification of putative genes from endophytes conferring resistance and tolerance to crop diseases, apart from those involved in the accumulation and degradation of contaminants, could open new avenues in agricultural research and development. Furthermore, a detailed molecular and biochemical understanding of endophyte entry and colonization strategy in the host would better help in manipulating crop productivity under changing climatic conditions. Therefore, the present review highlights current research trends based on the SCOPUS database, potential biotechnological interventions of endophytic microorganisms in combating environmental stresses influencing crop productivity, future opportunities of endophytes in improving plant stress tolerance, and their contribution to sustainable remediation of hazardous environmental contaminants. Graphical Abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.