Background-Plasma C-reactive protein (CRP) concentration is a strong predictor of atherosclerosis. However, to date, there is no in vivo evidence that CRP is proatherogenic. Methods and Results-We studied the effect of human CRP transgene (tg) expression, under basal and turpentinestimulated conditions, on atherosclerosis in apolipoprotein (apo) E Ϫ/Ϫ mice. Aortic atherosclerotic lesions in 29-week-old male mice were 48% larger (PϽ0.02) in turpentine-treated mice and 34% larger (PϽ0.05) in untreated CRPtg
Mutations in BSCL2 underlie human congenital generalized lipodystrophy. We inactivated Bscl2 in mice to examine the mechanisms whereby absence of Bscl2 leads to adipose tissue loss and metabolic disorders. Bscl2 ؊/؊ mice develop severe lipodystrophy of white adipose tissue (WAT), dyslipidemia, insulin resistance, and hepatic steatosis. In vitro differentiation of both Bscl2
Circadian disruption has deleterious effects on metabolism. Global deletion of Bmal1, a core clock gene, results in β-cell dysfunction and diabetes. However, it is unknown if this is due to loss of cell-autonomous function of Bmal1 in β cells. To address this, we generated mice with β-cell clock disruption by deleting Bmal1 in β cells (β-Bmal1(-/-)). β-Bmal1(-/-) mice develop diabetes due to loss of glucose-stimulated insulin secretion (GSIS). This loss of GSIS is due to the accumulation of reactive oxygen species (ROS) and consequent mitochondrial uncoupling, as it is fully rescued by scavenging of the ROS or by inhibition of uncoupling protein 2. The expression of the master antioxidant regulatory factor Nrf2 (nuclear factor erythroid 2-related factor 2) and its targets, Sesn2, Prdx3, Gclc, and Gclm, was decreased in β-Bmal1(-/-) islets, which may contribute to the observed increase in ROS accumulation. In addition, by chromatin immunoprecipitation experiments, we show that Nrf2 is a direct transcriptional target of Bmal1. Interestingly, simulation of shift work-induced circadian misalignment in mice recapitulates many of the defects seen in Bmal1-deficient islets. Thus, the cell-autonomous function of Bmal1 is required for normal β-cell function by mitigating oxidative stress and serves to preserve β-cell function in the face of circadian misalignment.
The insulin/IGF-1 (insulin-like growth factor 1) signalling pathway promotes adipocyte differentiation via complex signalling networks. Here, using microarray analysis of brown preadipocytes that are derived from wild-type and insulin receptor substrate (Irs) knockout animals that exhibit progressively impaired differentiation, we define 374 genes/expressed-sequence tags whose expression in preadipocytes correlates with the ultimate ability of the cells to differentiate. Many of these genes, including preadipocyte factor-1 (Pref-1) and multiple members of the Wnt signalling pathway, are related to early adipogenic events. Necdin is also markedly increased in Irs knockout cells that cannot differentiate, and knockdown of necdin restores brown adipogenesis with downregulation of Pref-1 and Wnt10a expression. Insulin receptor substrate proteins regulate a necdin-E2F4 interaction that represses peroxisome-proliferator-activated receptor gamma (PPARgamma) transcription via a cyclic AMP response element binding protein (CREB)-dependent pathway. Together these define a key signalling network that is involved in brown preadipocyte determination.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.