The time-course and magnitude of astrocyte proliferation following neural trauma was evaluated in young adult (3 months) and mid-aged (16-19 months) male Fischer 344 rats. One to 4 days after a needle wound was made through the cortex and the hippocampus, rats received three intraperitoneal injections of 3H-thymidine at 8 hour intervals and were sacrificed 1 hour after the last injection. For astrocyte quantification, 3H-thymidine autoradiography was combined with immunohistochemical staining for glial fibrillary acidic protein followed by semithin sectioning. In areas of the cortex and hippocampus adjacent to the wound, astrocytes were categorized as unlabeled or labeled with silver grains over the nuclei. Labeling index and numerical density of astrocytes were determined using stereological methods. The results showed that in both young and older rats, astrocyte proliferation is an early glial response to neural trauma, occurring during the first 4 postlesion days and contributing to an increase in astrocyte population. Regional differences in labeling index and numerical density suggest heterogeneity in the proliferative capacity of astrocyte subpopulations in the rat brain. Compared with young animals, older rats demonstrated greater labeling in the cortex but not in the hippocampus. Thus, aging is associated with region-specific increase in astrocyte reactivity to trauma possibly due to increased availability of mitogens or enhanced sensitivity of astrocytes to mitogenic signals.
Immunohistochemical staining and quantitative evaluation of glial fibrillary acidic protein (GFAP) were carried out in a stab wound model of neural trauma in the rat. Increased GFAP staining was detected in reactive cortical astrocytes in the vicinity of the wound at 3, 7, and 30 d following injury. Western blots immunostained for GFAP also demonstrated an increase in GFAP in homogenates from the lesioned cortex, compared to the contralateral control side, on days 3, 7, and 30. Specific activity of GFAP expressed as a ratio of lesion/control values showed a fivefold increase from day 0 to day 7, with no further change on day 30. We conclude that neural trauma elicits a quantitative increase in GFAP in the rat cortex during the first week following injury. This increase correlates with both astrocyte hyperthrophy and proliferation. Thus, specific activity of GFAP is a reliable indicator of the onset and progression of astrogliosis in neural trauma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.