The activity of natural killer (NK) cells is regulated by surface receptors, which direct target cell recognition. NKp30 (Natural Cytotoxicity Receptor 3) induces target cell lysis and is also crucial for the interaction with dendritic cells. So far, the cellular ligands for NKp30 have remained elusive. Here we show that the nuclear factor HLA-B-associated transcript 3 (BAT3) was released from tumor cells, bound directly to NKp30, and engaged NKp30 on NK cells. BAT3 triggered NKp30-mediated cytotoxicity and was necessary for tumor rejection in a multiple myeloma model. These data identify BAT3 as a cellular ligand for NKp30. We propose a concept for target cell recognition by NK cells beyond "missing self" and "induced self," mediated through a tumor cell-derived extracellular factor.
Therapeutic protein drugs are an important class of medicines serving patients most in need of novel therapies. Recently approved recombinant protein therapeutics have been developed to treat a wide variety of clinical indications, including cancers, autoimmunity/inflammation, exposure to infectious agents, and genetic disorders. The latest advances in protein-engineering technologies have allowed drug developers and manufacturers to fine-tune and exploit desirable functional characteristics of proteins of interest while maintaining (and in some cases enhancing) product safety or efficacy or both. In this review, we highlight the emerging trends and approaches in protein drug development by using examples of therapeutic proteins approved by the U.S. Food and Drug Administration over the previous five years (2011–2016, namely January 1, 2011, through August 31, 2016).
NKp30, a natural cytotoxicity receptor expressed on NK cells is critically involved in direct cytotoxicity against various tumor cells and directs both maturation and selective killing of dendritic cells. Recently the intracellular protein BAT3, which is involved in DNA damage induced apoptosis, was identified as a ligand for NKp30. However, the mechanisms underlying the exposure of the intracellular ligand BAT3 to surface NKp30 and its role in NK-DC cross talk remained elusive. Electron microscopy and flow cytometry demonstrate that exosomes released from 293T cells and iDCs express BAT3 on the surface and are recognized by NKp30-Ig. Overexpression and depletion of BAT3 in 293T cells directly correlates with the exosomal expression level and the activation of NK cell-mediated cytokine release. Furthermore, the NKp30-mediated NK/DC cross talk resulting either in iDC killing or maturation was BAT3-dependent. Taken together this puts forward a new model for the activation of NK cells through intracellular signals that are released via exosomes from accessory cells. The manipulation of the exosomal regulation may offer a novel strategy to induce tumor immunity or inhibit autoimmune diseases caused by NK cell-activation.
The repurposing of the CRISPR/Cas microbial adaptive immune system for gene editing has resulted in an exponential rise in new technologies and promising approaches for treating numerous human diseases. While some of the approaches being currently developed involve ex vivo editing by CRISPR/Cas9, many more potential applications will require in vivo editing. The in vivo use of this technology comes with challenges, one of which is the immune response to Cas9, a protein of microbial origin. Thus, the prevalence of pre-existing antibodies to Cas9 could also be a relevant parameter. There are many avenues for how CRISPR/Cas9 technologies will be applied in vivo, including the mode of delivery. These may be expected to invoke different immunological pathways. Nonetheless, as with all protein therapeutics, it may be desirable to monitor for anti-Cas9 antibodies during clinical development. This will require the development of robust and reliable assays. Here, we describe ELISA-based assays that are capable of detecting antibodies to Cas9 from Staphylococcus aureus (SaCas9) and Streptococcs pyogenes (SpCas9) in human sera. Furthermore, using these assays to screen for pre-existing antibodies in 200 human serum samples, we found the prevalence of anti-SaCas9 and anti-SpCas9 antibodies to be 10% and 2.5%, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.