Rao et al.: Characterization and Ex Vivo studies of ItraconazoleItraconazole, an antifungal drug possess poor solubility, gastrointestinal irritation and first pass effect. Hence in the present work it was initially made as nanoparticles to facilitate absorption and at later stage nanoparticles loaded transdermal patches were developed using promising nanoparticles. Nanoparticles were prepared with Eudragit RL 100 by solvent displacement technique. Formulations F1 to F9 were prepared by using different concentrations of Eudragit RL 100 and polyvinyl alcohol and evaluated for drug content, drug release, entrapment efficiency and mean particle size. The selected formulation was lyophilized to incorporate these formed nanoparticles into transdermal patch by varying concentrations of hydroxy propyl methyl cellulose K100M, polyvinyl alcohol and polyethylene glycol 400. The obtained patches were evaluated for thickness, tensile strength, folding endurance, moisture absorption and moisture content and the drug release showed biphasic release. All the formulations followed first order kinetics, diffusion controlled and fickian release. Flux (ex vivo) studies on rat skin of optimized formulation have high flux of 63.24 µg/cm 2 /h compared with pure drug, prepared itraconazole ointment 39.15 µg/ cm 2 /h and prepared itraconazole gel 40.01 µg/cm 2 /h. The permeability of itraconazole nanoparticle loaded transdermal patch showed 2.63 folds enhancement compared to pure drug. Scanning electron microscopes clearly showed the drug loaded nanoparticle embedment in polymeric transdermal patch. Formulated nanoparticle loaded itraconazole transdermal patch can be successfully used as a carrier for enhancing transdermal permeation and the bioavailability.
Objective: The main objective of this study was to investigate the release pattern of a poorly water-soluble drug quercetin (QU) by fabricating its cyclodextrin nanosponges. Methods: Characterization of the original QU powder and QU-loaded nanosponges was carried out by the Fourier-transformed infrared (FTIR) spectroscopy, transmission electron microscopy (TEM), and dissolution tester. The drug release pattern was subjected to various kinetic models. Results: FTIR studies confirmed the formation of inclusion complex of drug. The particle size analysis revealed that the average particle size measured by laser light scattering method is around 400–420 nm with low polydispersity index. The particle size distribution is unimodal and having a narrow range. A sufficiently high zeta potential indicates that the complexes would be stable and the tendency to agglomerate would be miniscule. TEM image revealed the porous nature of nanosponges. The dissolution of the QU nanosponges was significantly higher compared with the pure drug. Conclusion: From the kinetic study, it is apparent that the regression coefficient value closer to unity in case of Korsmeyer-Peppas model indicates that the drug release exponentially to the elapsed time. n value obtained from the Korsmeyer-Peppas plots, i.e., 0.9911 indicating non-Fickian (anomalous) transport ; thus, it projected that delivered its active ingredient by coupled diffusion and erosion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.