IR spectra directly probe specific vibrators in bovine heart cytochrome c oxidase, yielding quantitative as well as qualitative information on structures and reactions at these vibrators. C-O IR spectra reveal that CO binds to Fe2+ a3 as two conformers each in isolated immobile environments sensitive to Fea and/or CuA oxidation state but remarkably insensitive to pH, medium, anesthetics, and other factors that affect activity. C-N IR spectra reveal that the one CN- that binds to fully and partially oxidized enzyme can be in three different structures. These structures vary in relative amounts with redox level, thereby reflecting dynamic electron exchange among Fea, CuA, and CuB with associated changes in protein conformation of likely significance in O2 reduction and H(+)-pumping. Azide IR spectra also reflect redox-dependent long-range effects. The amide I IR bands, due to C-O vibrators of peptide linkages and composed of multiple bands derived from different secondary structures, reveal high levels of alpha-helix (approximately 60%) and subtle changes with redox level and exposure to anesthetics. N2O IR spectra reveal that these anesthetic molecules at clinically relevant levels occupy three sites of different polarity within the enzyme as the enzyme is reversibly, but only partially, inhibited.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.