These newly developed ICD-10 and ICD-9-CM comorbidity coding algorithms produce similar estimates of comorbidity prevalence in administrative data, and may outperform existing ICD-9-CM coding algorithms.
With advances in the effectiveness of treatment and disease management, the contribution of chronic comorbid diseases (comorbidities) found within the Charlson comorbidity index to mortality is likely to have changed since development of the index in 1984. The authors reevaluated the Charlson index and reassigned weights to each condition by identifying and following patients to observe mortality within 1 year after hospital discharge. They applied the updated index and weights to hospital discharge data from 6 countries and tested for their ability to predict in-hospital mortality. Compared with the original Charlson weights, weights generated from the Calgary, Alberta, Canada, data (2004) were 0 for 5 comorbidities, decreased for 3 comorbidities, increased for 4 comorbidities, and did not change for 5 comorbidities. The C statistics for discriminating in-hospital mortality between the new score generated from the 12 comorbidities and the Charlson score were 0.825 (new) and 0.808 (old), respectively, in Australian data (2008), 0.828 and 0.825 in Canadian data (2008), 0.878 and 0.882 in French data (2004), 0.727 and 0.723 in Japanese data (2008), 0.831 and 0.836 in New Zealand data (2008), and 0.869 and 0.876 in Swiss data (2008). The updated index of 12 comorbidities showed good-to-excellent discrimination in predicting in-hospital mortality in data from 6 countries and may be more appropriate for use with more recent administrative data.
The risk of perforation after colonoscopy is approximately double that after sigmoidoscopy, but this difference appears to be decreasing. These observations should be useful to clinicians making screening and diagnostic decisions for individual patients and to policy officials setting guidelines for colorectal cancer screening programs.
The transition to ICD-10 has occurred with no loss of data quality, with data showing a high level of reliability and adherence to coding standards. When consideration is given to the nature of the analysis, administrative data can provide highly reliable population-based estimates of hospitalization rates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.