The objective of the present study is to investigate the influence of surface modification on systemic stability of NPs. Vitamin E TPGS (1% w/v) was used for surface modification of berberine chloride nanoparticles. Naked and surface modified NPs were incubated in different SBFs (pH 6.8 and 7.4) with or without bile salts and human plasma. NPs were observed for particle agglomeration and morphology by particle size analyzer and TEM, respectively. The haemocompatibility studies were conducted on developed NPs to evaluate their safety profile. The surface modified NPs were stable compared to naked NPs in different SBFs due to the steric stabilization property of vitamin E TPGS. Particle agglomeration was not seen when NPs were incubated in SBF (pH 6.8) with bile salts. No agglomeration was observed in NPs after their incubation in plasma but particle size of the naked NPs increased due to adhesion of plasma proteins. The TEM images confirmed the particle size results. DSC and FT-IR studies confirmed the coexistence of TPGS in surface modified NPs. The permissible haemolysis, LDH release, and platelet aggregation revealed that NPs were compatible for systemic administration. Thus, the study illustrated that the surface modification is helpful in the maintenance of stability of NPs in systemic conditions.
DOE approach was successfully applied for the development of VRL-SLNs. Enhanced entrapment and anticancer efficacy of TPGS-VRL-SLN can be attributed to emulsifying nature of GMO and inherent cytotoxic nature of TPGS, respectively, which synergizes with VRL. Therefore, TPGS associated SLNs may be potential carrier in cancer chemotherapeutics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.