The metabolic repertoire in nature is augmented by generating hybrid metabolites from a limited set of gene products. In mycobacteria, several unique complex lipids are produced by the combined action of fatty acid synthases and polyketide synthases (PKSs), although it is not clear how the covalently sequestered biosynthetic intermediates are transferred from one enzymatic complex to another. Here we show that some of the 36 annotated fadD genes, located adjacent to the PKS genes in the Mycobacterium tuberculosis genome, constitute a new class of long-chain fatty acyl-AMP ligases (FAALs). These proteins activate long-chain fatty acids as acyl-adenylates, which are then transferred to the multifunctional PKSs for further chain extension. This mode of activation and transfer of fatty acids is contrary to the previously described universal mechanism involving the formation of acyl-coenzyme A thioesters. Similar mechanisms may operate in the biosynthesis of other lipid-containing metabolites and could have implications in engineering novel hybrid products.
Mycobacterium tuberculosis cell envelope is a treasure house of biologically active lipids of fascinating molecular architecture. Although genetic studies have alluded to an array of genes in biosynthesis of complex lipids, their mechanistic, structural, and biochemical principles have not been investigated. Here, we have dissected the molecular logic underlying the biosynthesis of a virulence lipid phthiocerol dimycocerosate (PDIM). Cell-free reconstitution studies demonstrate that polyketide synthases, which are usually involved in the biosynthesis of secondary metabolites, are responsible for generating complex lipids in mycobacteria. We show that PapA5 protein directly transfers the protein bound mycocerosic acid analogs on phthiocerol to catalyze the final esterification step. Based on precise identification of biological functions of proteins from Pps cluster, we have rationally produced a nonmethylated variant of mycocerosate esters. Apart from elucidating mechanisms that generate chemical heterogeneity with PDIMs, this study also presents an attractive approach to explore host-pathogen interactions by altering mycobacterial surface coat.
AS1411 is a DNA aptamer that is in phase II clinical trials for relapsed or refractory acute myeloid leukemia and for renal cell carcinoma. AS1411 binds to nucleolin, a protein that is overexpressed in the cytoplasm and on the plasma membrane of some tumor cells compared with normal cells. Studies were performed to determine whether cell surface nucleolin is a receptor for AS1411 in the acute myeloid leukemia cell line MV4-11. Biotinylation of MV4-11 cell surface proteins followed by immunoblotting of the biotinylated proteins showed that full-length (106 kDa) and truncated forms of nucleolin were present on the cell surface. In contrast, K-562 cells, which are 4-fold less sensitive than MV4-11 cells to AS1411, showed no full-length nucleolin and lesser amounts of the truncated forms of nucleolin on the cell surface. Incubation of MV4-11 cells with
The growth factor, vascular endothelial growth factor (VEGF), induces angiogenesis and promotes endothelial cell (EC) proliferation. Affymetrix gene array analyses show that VEGF stimulates the expression of a cluster of nuclear-encoded mitochondrial genes, suggesting a role for VEGF in the regulation of mitochondrial biogenesis. We show that the serine threonine kinase Akt3 specifically links VEGF to mitochondrial biogenesis. A direct comparison of Akt1 vs. Akt3 gene silencing was performed in ECs and has uncovered a discrete role for Akt3 in the control of mitochondrial biogenesis. Silencing of Akt3, but not Akt1, results in a decrease in mitochondrial gene expression and mtDNA content. Nuclear-encoded mitochondrial gene transcripts are also found to decrease when Akt3 expression is silenced. Concurrent with these changes in mitochondrial gene expression, lower O(2) consumption was observed. VEGF stimulation of the major mitochondrial import protein TOM70 is also blocked by Akt3 inhibition. In support of a role for Akt3 in the regulation of mitochondrial biogenesis, Akt3 silencing results in the cytoplasmic accumulation of the master regulator of mitochondrial biogenesis, PGC-1alpha, and a reduction in known PGC-1alpha target genes. Finally, a subtle but significant, abnormal mitochondrial phenotype is observed in the brain tissue of AKT3 knockout mice. These results suggest that Akt3 is important in coordinating mitochondrial biogenesis with growth factor-induced increases in cellular energy demands.
Zhong Z, Ramshesh VK, Rehman H, Currin RT, Sridharan V, Theruvath TP, Kim I, Wright GL, Lemasters JJ. Activation of the oxygen-sensing signal cascade prevents mitochondrial injury after mouse liver ischemia-reperfusion. Am J Physiol Gastrointest Liver Physiol 295: G823-G832, 2008. First published September 4, 2008 doi:10.1152/ajpgi.90287.2008.-The mitochondrial permeability transition (MPT) plays an important role in hepatocyte death caused by ischemia-reperfusion (IR). This study investigated whether activation of the cellular oxygen-sensing signal cascade by prolyl hydroxylase inhibitors (PHI) protects against the MPT after hepatic IR. Ethyl 3,4-dihyroxybenzoate (EDHB, 100 mg/kg ip), a PHI, increased mouse hepatic hypoxia-inducible factor-1␣ and heme oxygenase-1 (HO-1). EDHB-treated and untreated mice were subjected to 1 h of warm ischemia to ϳ70% of the liver followed by reperfusion. Mitochondrial polarization, cell death, and the MPT were assessed by intravital confocal/multiphoton microscopy of rhodamine 123, propidium iodide, and calcein. EDHB largely blunted alanine aminotransferase (ALT) release and necrosis after reperfusion. In vehicle-treated mice at 2 h after reperfusion, viable cells with depolarized mitochondria were 72%, and dead cells were 2%, indicating that depolarization preceded necrosis. Mitochondrial voids excluding calcein disappeared, indicating MPT onset in vivo. NIM811, a specific inhibitor of the MPT, blocked mitochondrial depolarization after IR, further confirming that mitochondrial depolarization was due to MPT onset. EDHB decreased mitochondrial depolarization to 16% and prevented the MPT. Tin protoporphyrin (10 mol/kg sc), an HO-1 inhibitor, partially abrogated protection by EDHB against ALT release, necrosis, and mitochondrial depolarization. In conclusion, IR causes the MPT and mitochondrial dysfunction, leading to hepatocellular death. PHI prevents MPT onset and liver damage through an effect mediated partially by HO-1. ethyl 3,4-dihyroxybenzoate; heme oxygenase; hepatic ischemia-reperfusion; mitochondrial permeability transition; prolyl hydroxylase inhibitor ISCHEMIA-REPERFUSION (IR) injury to the liver occurs in trauma, hemorrhagic and cardiac shock, vascular diseases, and hepatic surgery, including tumor resection and liver transplantation. A variety of pathophysiological processes likely contribute to development of IR injury. Reactive oxygen species (ROS) play a critical role in the injury caused by IR (18,36,57). ROS not only directly damage cell membranes, DNA, and protein; they also trigger formation of toxic cytokines and increase adhesion molecules leading to inflammatory responses, tissue damage, and multiple organ failure (1,10,17,41). Recently, growing evidence supports an important role of the mitochondrial permeability transition (MPT) in cell injury after IR (24,25,45,58). The mitochondrial membrane potential collapses when the MPT occurs, leading to failure of ATP synthesis, release of cytochrome c, and cell death (24,25,55). ROS cause opening of MPT pores (22...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.