Pool boiling experiments were conducted with three horizontal, flat, silicon surfaces, two of which were coated with vertically aligned multiwalled carbon nanotubes (MWCNTs). The two wafers were coated with MWCNT of two different thicknesses: 9 μm (Type-A) and 25 μm (Type-B). Experiments were conducted for the nucleate boiling and film boiling regimes for saturated and subcooled conditions with liquid subcooling of 0–30°C using a dielectric fluorocarbon liquid (PF-5060) as test fluid. The pool boiling heat flux data obtained from the bare silicon test surface were used as a base line for all heat transfer comparisons. Type-B MWCNT coatings enhanced the critical heat flux (CHF) in saturated nucleate boiling by 58%. The heat flux at the Leidenfrost point was enhanced by a maximum of ∼150% (i.e., 2.5 times) at 10°C subcooling. Type-A MWCNT enhanced the CHF in nucleate boiling by as much as 62%. Both Type-A MWCNT and bare silicon test surfaces showed similar heat transfer rates (within the bounds of experimental uncertainty) in film boiling. The Leidenfrost points on the boiling curve for Type-A MWCNT occurred at higher wall superheats. The percentage enhancements in the value of heat flux at the CHF condition decreased with an increase in liquid subcooling. However the enhancement in heat flux at the Leidenfrost points for the nanotube coated surfaces increased with liquid subcooling. Significantly higher bubble nucleation rates were observed for both nanotube coated surfaces.
Abstract-The effect of nano-structured surfaces on pool boiling was investigated. Saturated and subcooled pool boiling experiments were performed on a horizontal heater surface coated with vertically aligned multiwalled carbon nanotubes (MWCNTs). MWCNTs were synthesized using the chemical vapor deposition (
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.