The promising results of metal oxides nanoparticles in different areas including the biological system lead us to investigate the antioxidant and antimicrobial actions of chemically synthesized cobalt oxide (Co3O4) nanoparticles. The different concentrations of synthesized Co3O4 nanoparticles were prepared and evaluated for different parameters at different time intervals i.e. on day 1, 30 and 60 after preparations. Co3O4 nanoparticles synthesized in this study were of 52.2 nm average size with a polydispersity index of 0.465. We observed that Co3O4 nanoparticles scavenge different in vitro free radicals (DPPH, ABTS, superoxide anion and hydrogen peroxide radicals) in concentration dependent manner. The percentage of inhibitions of free radicals by Co3O4 nanoparticles was markedly more on day 1 as compared to day 30 and 60. The IC50 values of Co3O4 nanoparticles for these free radicals were also on day 1 as compared to day 30 and 60. The Co3O4 nanoparticles showed the antibacterial actions against both the bacterial strains i.e. S. aureus and E. coli. The MIC and MBC values revealed that action of Co3O4 nanoparticles was more against E. coli than S. aureus. The MIC and MBC values were lower on day 1 as compared to day 30 and 60 with respective to specific bacteria. In conclusions, the Co3O4 nanoparticles synthesized in this study showed potent antioxidant and antibacterial properties due to which it may serve as promising candidate for the combat the biological problems humans, animals and plants associated with reactive oxygen species and bacteria.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.