In this paper, a comprehensive review on Alzheimer's disease (AD) is carried out, and an exploration of the two machine learning (ML) methods that help to identify the disease in its initial stages. Alzheimer's disease is a neurocognitive disorder occurring in people in their early onset. This disease causes the person to suffer from memory loss, unusual behavior, and language problems. Early detection is essential for developing more advanced treatments for AD. Machine learning (ML), a subfield of Artificial Intelligence (AI), uses various probabilistic and optimization techniques to help computers learn from huge and complicated data sets. To diagnose AD in its early stages, researchers generally use machine learning. The survey provides a broad overview of current research in this field and analyses the classification methods used by researchers working with ADNI data sets. It discusses essential research topics such as the data sets used, the evaluation measures employed, and the machine learning methods used. Our presentation suggests a model that helps better understand current work and highlights the challenges and opportunities for innovative and useful research. The study shows which machine learning method holds best for the ADNI data set. Therefore, the focus is given to two methods: the 18-layer convolutional network and the 3D convolutional network. Hence, CNNs with multi-layered fetch more accurate results as compared to 3D CNN. The work also contributes to the use of the ADNI data set, where the classification of training and testing samples is divided with such a number that brings the highest accuracy achieved with 18-layer CNN. The work concentrates on the early prediction of Alzheimer's disease with machine learning methods. Thus, the accuracy achieved is 98% for 18-layer CNN.
Automatic number plate recognition is one of the techniques that can be used for the identification of vehicles number plate.The purpose of this project is to investigate a suitable way to recognize the registration plate from an image of vehicle.
Face recognizable proof has drawn in numerous scientists because of its novel benefit, for example, non-contact measure for include obtaining. Varieties in brightening, posture and appearance are significant difficulties of face acknowledgment particularly when pictures are taken as dim scale. To mitigate these difficulties partially many exploration works have been completed by considering shading pictures and they have yielded better face acknowledgment rate. A strategy for perceiving face utilizing shading nearby surface highlights is depicted. Test results show that Face ID approaches utilizing shading neighborhood surface highlights astonishingly yield preferred acknowledgment rates over Face acknowledgment approaches utilizing just shading or surface data. Especially, contrasted and grayscale surface highlights, the proposed shading neighborhood surface highlights can give great coordinating with rates to confront pictures taken under extreme varieties in enlightenment and furthermore for low goal face pictures. The other biometric framework utilizes palmprint as quality for the recognizable proof and validation of people. The principal point is to extract Haralick highlights and utilization of probabilistic neural organizations for confirmation utilizing palmprint biometric quality. PolyUdatabase tests are taken from around 200 clients every client's 2 examples are gained. This palm print biometric recognizes the phony (fake) palmprint made of POP (Plaster of paris) and separates among living and non-living dependent on the entropy highlight. Test results portray that the eleven Haralick feature values are acquired in execution stage and productive precision is accomplished.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.