Human coronaviruses (HCoVs) cause respiratory diseases infecting the upper and/or lower respiratory tract. The six human coronaviruses so far identified are HCoV-229E, HCoV-OC43, HCoV-NL63, HCoV-HKU-1, SARS-CoV, and MERS-CoV. Four of these coronaviruses (HCoV-229E, HCoV-OC43, HCoV-NL63, and HCoV-HKU-1) are known as circulating common coronavirus found continuously in the human population causing mostly common cold, with few cases of severe diseases. In late December 2019, a novel human coronavirus, now called SARS-CoV-2, was identified during an outbreak in Wuhan, China. The disease spectrum caused by this virus is now called COVID-19 (Coronavirus Infectious disease 2019). This novel coronavirus has spread globally resulting in a world-wide pandemic that continues to rage as of now. SARS-CoV-2 has a high case morbidity and mortality rate and is high risk to the elderly populations, immune-compromised populations, and to those who have other critical issues like heart disease, diabetes, etc.In this review, we summarize the latest information of the epidemiology, pathogenesis, and clinical aspects of SARS-CoV-2, and discuss the current scientific and therapeutic advancements for clinical treatment of this pandemic novel coronavirus. A: Human Coronavirus and its Different Types:Coronaviruses (CoVs) are single-stranded positive-sense RNA viruses whose genome (>27kb) is encapsulated within a lipid membrane envelope carrying spike protein [15]. This envelope is studded with glycoprotein spikes that give coronaviruses their crown-
Remdesivir (RDV) is the only antiviral drug so far approved for COVID-19 therapy by the FDA. However its efficacy is limited in vivo due to its low stability in presence of plasma. This paper compared the stability of RDV encapsulated with our platform technology based polymer NV-387 (NV-CoV-2), in presence of plasma in vitro and in vivo. Furthermore, a non- clinical pharmacology studies of NV-CoV-2 (Polymer) and NV-CoV-2-R (Polymer encapsulated Remdesivir) in both NL-63 infected and uninfected rats were done. In an in vitro cell culture model experiment, antiviral activity of NV-CoV-2 and NV-CoV-2-R are also compared with RDV.The results are (i) NV-CoV-2 polymer encapsulation protects RDV from plasma- mediated catabolism in vitro and in vivo, too. (ii) Body weight measurements of the normal (uninfected) rats after administration of the test materials (NV-CoV-2, and NV-CoV-2-R) show no toxic effects on them. (iii) NL-63 infected rats body weights and their survival length were like uninfected rats after treatment with NV-CoV-2 and NV-CoV-2-R, and the efficacy as an antiviral regimen were found in the order as below: NV-CoV-2-R > NV-CoV-2 > RDV.In brief, our platform technology based NV-387-encapsulated-RDV (NV-CoV-2-R) drug has a dual effect on coronaviruses. First, NV-CoV-2 itself as an antiviral regimen. Secondly, RDV is protected from plasma-mediated degradation in transit, rendering altogether the safest and an efficient regimen against COVID-19.
NV-CoV-2, a nanoviricide composed of covalently attached polyethylene glycol and alkyl pendants that are designed to bind free virion particles of multiple strains of coronaviruses in a broad-spectrum manner at multiple points. The binding interaction is like a nano-velcro-tape and may cause a lipid–lipid fusion between nanoviricide micelle and the lipid envelope of the virus. A nanoviricide can encapsulate the virus and dismantle it without any involvement of the host immune system, ultimately disabling the infectibility of the host cells. Thus, it may be expected to count a stronger and synergistic antiviral effect by combining NV-CoV-2 with other anti-coronavirus regimens like remdesivir. Furthermore, some ligands similar to the SARS-CoV S-protein are designed by molecular modeling and attached to the nanoviricide at the same site as where the cognate cellular receptor, ACE2, binds. As a result, a competitive binding inhibition may occur. A nanoviricide can encapsulate other antiviral compounds and protect them from serum-mediated degradation in vivo. This makes the antiviral compounds available for a longer period of time to interact with RNA polymerase and inhibit it. Altogether, a multipoint antiviral efficacy can be achieved with our nanoviricide, NV-CoV-2.
So far, there are seven coronaviruses identified that infect humans and only 4 of them belong to the beta family of coronavirus (HCoV-HKU1, SARS-CoV-2, MERS-CoV and SARS-CoV). SARS family are known to cause severe respiratory disease in humans. In fact, SARS-CoV-2 infection caused a pandemic COVID-19 disease with high morbidity and mortality. Remdesivir (RDV) is the only antiviral drug so far approved for COVID-19 therapy by the FDA. However, the efficacy of RDV in vivo is limited due to its low stability in presence of plasma. This is the report of analysis of the non-clinical pharmacology study of NV-CoV-2 (Polymer) and NV-CoV-2-R (Polymer encapsulated Remdesivir) in both infected and uninfected rats with SARS-CoV-2.Detection and quantification of NV-CoV-2-R in plasma samples was done by MS-HPLC chromatography analyses of precipitated plasma samples from rat subjects.NV-CoV-2-R show RDV peak in MS-HPLC chromatography, whereas only NV-CoV-2 does not show any RDV-Peak, as expected.NV-CoV-2 polymer encapsulation protects RDV in vivo from plasma-mediated catabolism.Body weight measurements of the normal (uninfected) rats after administration of the test materials (NV-CoV-2, and NV-CoV-2-R) show no toxic effects on them.Our platform technology based NV-387-encapsulated-RDV (NV-CoV-2-R) drug has a dual effect on coronaviruses. First, NV-CoV-2 itself as an antiviral regimen. Secondly, RDV is protected from plasma-mediated degradation in transit, rendering altogether the safest and an efficient regimen against COVID-19.
As of today seven coronaviruses were identified to infect humans, out of which only 4 of them belongs to beta family of coronavirus, like HCoV-HKU1, SARS-CoV-2, MERS-CoV and SARS-CoV. SARS family of viruses were known to cause severe respiratory disease in humans. SARS-CoV-2 infection causes pandemic COVID-19 disease with high morbidity and mortality. Remdesivir (RDV) is the only antiviral drug so far approved for Covid-19 therapy by FDA. However it’s efficacy is limited in vivo due to it’s low stability in presence of Plasma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.