Design of low‐power and area‐efficient portable complementary metal–oxide–semiconductor processors for image and signal processing applications demand reduction in transistor switching and count. Adder is the fundamental block of all arithmetic operations performed in processing units. In this study, an error‐tolerant parallel adder with faithful approximation is proposed that can optimise area and accuracy. In the proposed parallel adder, for n bit input and m bit adder block, least n/2m blocks are designed with approximate logic using carry by‐pass addition algorithm and most n/2m blocks are designed with exact logic using carry select addition algorithm. Least significant approximate part of the adder is designed with either exact full adder (EFA) or fault‐tolerant full adder (FTFA) cells. This confines the maximum error in the proposed‐EFA and proposed‐FTFA designs to be not more than unit bit value with weights 2[(n/2m)−1]m and 2n/2, respectively. Two different FTFA cells are proposed and implemented in the approximate blocks. The synthesis results of the proposed‐EFA, proposed‐FTFA1 and proposed‐FTFA2 designs using Cadence Encounter with 90 nm ASIC technology for n = 16, m = 4 demonstrated an area saving of 22.3, 28.2 and 35%, respectively, when compared to the conventional counterpart.
In the recent years, error recovery circuits in optimized data path units are adopted with approximate computing methodology. In this paper the novel multipliers have effective utilization in the newly proposed two different 4:2 approximate compressors that generate Error free Sum (ES) and Error free Carry (EC). Proposed ES and Proposed EC in 4:2 compressors are used for performing Partial Product (PP) compression. The structural arrangement utilizes Dadda structure based PP. Due to the regularity of PP arrangement Dadda multiplier is chosen for compressor implementation that favors easy standard cell ASIC design. In this, the proposed compression idealogy are more effective in the smallest n columns, and the accurate compressor in the remaining most significant columns. This limits the error in the multiplier output to be not more than 2 n for an n X n multiplication. The choice among the proposed compressors is decided based on the significance of the sum and carry signals on the multiplier result. As an enhancement to the proposed multiplier, we introduce two Area Efficient (AE) variants viz., Proposed-AE (P-AE), and P-AE with Error Recovery (P-AEER). The proposed basic P-AE, and P-AEER designs exhibit 46.7%, 52.9%, and 52.7% PDP reduction respectively when compared to an approximate multiplier of minimal error type and are designed with 90nm ASIC technology. The proposed design and their performance validation are done by using Cadence Encounter. The performance evaluations are carried out using cadence encounter with 90nm ASIC technology. The proposed-basic P-AEA and P-AEER designs demonstrate 46.7%, 52.9% and 52.7% PDP reduction compared to the minimal error approximate multiplier. The proposed multiplier is implemented in digital image processing which revealed 0.9810 Structural SIMilarity Index (SSIM), to the least, and less than 3% deviation in ECG signal processing application.
In the present era, reversible logic designs play a very critical role in nanotechnology, low power complementary metal-oxide semiconductor (CMOS) designs, optical computing and, especially, in quantum computing. High power dissipation and leakage current in deep submicron technologies is a severe threat in applications created today. As a consequence, design of datapath elements in reversible logic has gained much importance. In this study, a novel design of binary coded decimal (BCD) adder/subtractor in reversible logic has been proposed. As a further optimization of the proposed reversible decimal design, carry skip (CSK) logic is used for reversible ripple carry adder stages. This reduces delay but at the expense of little hardware. The proposed BCD adder/subtractor and its optimized version are designed using structural VHDL and simulated using ModelSim 6.3f. Performance analysis reveals that the proposed BCD design demonstrates reductions in gate count, garbage outputs and constant inputs of 30.5%, 46% and 28%, respectively, and its optimized version exhibits 19.4%, 32.4% and 16% reductions in gate count, garbage outputs and constant inputs compared to the design in Ref. 14 [V. Rajmohan, V. Renganathan and M. Rajmohan, A novel reversible design of unified single digit BCD adder–subtractor, Int. J. Comput. Theor. Eng. 3 (2011) 697–700].
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.