<span>Data deduplication techniques removing repeated or redundant data from the storage. In recent days, more data has been generated and stored in the storage environment. More redundant and semantically similar content of the data occupied in the storage environment due to this storage efficiency will be reduced and cost of the storage will be high. To overcome this problem, we proposed a method hybrid bidirectional encoder representation from transformers for text semantics using graph convolutional network hybrid bidirectional encoder representation from transformers (BERT) model for text semantics (HBTSG) word embedding-based deep learning model to <span>identify near duplicates based on the semantic relationship between text documents. In this paper we hybridize the concepts of chunking and</span> <span>semantic analysis. The chunking process is carried out to split the documents into blocks. Next stage we identify the semantic relationship between</span> <span>documents using word embedding techniques. It combines the advantages of the chunking, feature extraction, and semantic relations to provide better results.</span></span>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.