A news recommendation system not only must recommend the latest, trending and personalized news to the users but also give opportunity to know about the people’s opinion on trending news. Most of the existing news recommendation systems focus on recommending news articles based on user-specific tweets. In contrast to these recommendation systems, the proposed Personalized News and Tweet Recommendation System (PNTRS) recommends tweets based on the recommended article. It firstly generates news recommendation based on user’s interest and twitter profile using the Multinomial Naïve Bayes (MNB) classifier. Further, the system uses these recommended articles to recommend various trending tweets using fuzzy inference system. Additionally, feedback-based learning is applied to improve the efficiency of the proposed recommendation system. The user feedback rating is taken to evaluate the satisfaction level and it is 7.9 on the scale of 10.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.