We demonstrate the integration of bright, fully polarized single-photon emitters readily created by thermal oxidation of cubic silicon carbide (SiC) into microdisk resonators. The resonators are created by a direct laser beam writing lithography technique that is used to align the position of the resonator to a preselected single defect. Quality factors as high as 1900 are measured. We show the presence of whispering gallery modes in the emission spectrum of a single defect and an increase in the detected emission intensity. The experimental work is supported by numerical calculations of the electric field distribution in the resonators.
The room temperature compatibility of the negatively charged nitrogen-vacancy (NV−) center in diamond makes it the ideal quantum system for a university teaching lab. Here, we describe a low-cost experimental setup for coherent control experiments on the electronic spin state of the NV− center. We implement spin-relaxation measurements, optically detected magnetic resonance, Rabi oscillations, and dynamical decoupling sequences on an ensemble of NV− centers. The relatively short times required to perform each of these experiments (<10 min) demonstrate the feasibility of the setup in a teaching lab. Learning outcomes include basic understanding of quantum spin systems, magnetic resonance, the rotating frame, Bloch spheres, and pulse sequence development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.