Replication Protein A (RPA) binds to single-stranded DNA (ssDNA) and recruits over three dozen RPA-interacting proteins (RIPs) to coordinate multiple aspects of DNA metabolism in-cluding DNA replication, repair, and recombination. Rtt105 is a molecular chaperone that regu-lates nuclear localization of RPA. Whether and how Rtt105 regulates the activities of RPA is poorly understood. Here, we show that Rtt105 binds to multiple DNA binding and protein-interaction domains of RPA and configurationally staples the complex. In the absence of ssDNA, Rtt105 inhibits RPA binding to Rad52, thus preventing spurious binding to RPA-interacting pro-teins (RIPs). When ssDNA is available, Rtt105 promotes formation of high-density RPA nucleo-protein filaments and dissociates during this process. Free Rtt105 further stabilizes the RPA-ssDNA filaments by inhibiting RPA facilitated exchange. Collectively, our data suggest that Rtt105 sequesters free RPA in the nucleus to prevent untimely RIP interaction, while stabilizing RPA-ssDNA filaments at DNA lesion sites.
Human replication protein A (RPA) is a heterotrimeric ssDNA binding protein responsible for many aspects of cellular DNA metabolism. The binding to and dissociation of the four individual DNA binding domains (DBDs) from DNA result in configurational dynamics of the RPA-DNA complexes which are essential for replacement of RPA by downstream proteins in various cellular metabolic pathways. RPA plays several important functions at telomeres where it binds to and melts telomeric G-quadruplexes, non-canonical DNA structures formed at the G-rich telomeric ssDNA overhangs. Here, we combine single-molecule total internal reflection fluorescence microscopy (smTIRFM), mass photometry (MP) with biophysical and biochemical analyses, of a gain-of-function RPA mutant to demonstrate that heterogeneous nuclear ribonucleoprotein A1 (hnRNPA1) specifically remodels RPA bound to telomeric ssDNA by dampening the RPA configurational dynamics and forming a stable ternary complex. Uniquely among hnRNPA1 target RNAs, TERRA is capable of releasing hnRNPA1 from the RPA-telomeric DNA complex. We speculate that this telomere specific RPA-DNA-hnRNPA1 complex is an important structure in telomere protection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.