In this paper, we consider the problem of power control when nodes are non-homogeneously dispersed in space. In such situations, one seeks to employ per packet power control depending on the source and destination of the packet. This gives rise to a joint problem which involves not only power control but also clustering. We provide three solutions for joint clustering and power control.The first protocol, CLUSTERPOW, aims to increase the network capacity by increasing spatial reuse. We provide a simple and modular architecture to implement CLUSTERPOW at the network layer.The second, Tunnelled CLUSTERPOW, allows a finer optimization by using encapsulation, but we do not know of an efficient way to implement it.The last, MINPOW, whose basic idea is not new, provides an optimal routing solution with respect to the total power consumed in communication. Our contribution includes a clean implementation of MINPOW at the network layer without any physical layer support.We establish that all three protocols ensure that packets ultimately reach their intended destinations. We provide a software architectural framework for our implementation as a network layer protocol. The architecture works with any routing protocol, and can also be used to implement other power control schemes. Details of the implementation in Linux are provided.0-7803-7753-2/03/$17.00 (C) 2003 IEEE
Temporal communities are the result of a consistent partitioning of nodes across multiple snapshots of an evolving network, and they provide insights into how dense clusters in a network emerge, combine, split and decay over time. To reliably detect temporal communities we need to not only find a good community partition in a given snapshot but also ensure that it bears some similarity to the partition(s) found in the previous snapshot(s), a particularly difficult task given the extreme sensitivity of community structure yielded by current methods to changes in the network structure. Here, motivated by the inertia of inter-node relationships, we present a new measure of partition distance called estrangement, and show that constraining estrangement enables one to find meaningful temporal communities at various degrees of temporal smoothness in diverse real-world datasets. Estrangement confinement thus provides a principled approach to uncovering temporal communities in evolving networks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.