Aluminium silicate metal matrix composite (AlSiC MMC) is satisfying the requirement of material with good mechanical, thermal properties, and good wear resistance. But the difficulties during the machining are the main hurdles to its replacement for other materials. Wire electric discharge machining (WEDM) is a very effective process used for this type of difficult-to-cut material. So an effort has been taken to find out the most favourable level of input parameters for WEDM of AlSiC (20%) composite using a Taguchi-based hybrid grey-fuzzy grade (GFG) approach. e plan for experimentation is designed using Taguchi's L 9 (2 3 ) array. e various process parameters considered for the investigation are pulse on time (T ON ), pulse off time (T OFF ), wire feed rate (WFR), and peak current (IP). Surface integrity such as surface roughness measured during the different types of cutting (along straight, inclined, and curvature directions) is considered in the present work. Grey relational analysis (GRA) pooled with the fuzzy logic is effectively used to find out the grey-fuzzy reasoning grade (GFRG). e Taguchi approach is coupled with the GFRG to obtain the optimum set of process parameters. From the experimental findings, it has been observed that the most economical process parameters for WEDM of AlSiCp20 were the pulse on time is 108 microsec, pulse off time is 56 microsec, wire feed rate (WFR) is 4 m/min, and peak current (IP) is 11 amp. From the analysis of variance (ANOVA), it is observed that the pulse on time is the foremost influencing parameters that contribute towards GFRG by 52.61%, followed by the wire feed rate (WFR) 38.32% and the current by 5.45%.
Aluminum (Al)-copper (Cu)-nickel (Ni) alloy is a versatile material with lightweight and excellent strength. It also possesses properties such as superior corrosion resistance, fatigue strength. These alloys are essential in sectors viz. automobile, aerospace, defense, aerospace, etc. In this research work, the authors have presented the prediction and analysis of tool wear rate (TWR). The impact of electrical discharge machining (EDM) on process parameters viz. input current (IP), pulse on time (TON), pulse off time (TOFF)/for Al/Cu/Ni alloy with the composition 91/4/5 and 87/8/5 (weight %) is analyzed. Taguchi's L 18 (2 1 *3 3) mixed plan is employed to plan the experimentation. A mathematical model develops to correlate these process parameters. A soft computing technique known as an adaptive neuro-fuzzy inference system (ANFIS) utilizes to predict TWR. Taguchi analysis reveals that input current is the most influencing parameter followed by pulse on time. TWR decreases with a decrease in the amount of Aluminium. It increases in the amount of copper in the alloy. TWR firstly decreases with an increase in pulse on time and then starts to grow after the median value of 25 micro-sec. The confirmation experiments have conducted using optimum process parameters to validate the obtained results. The experimental finding shows the superior capability of ANFIS to predict the TWR with acceptable accuracy. The optimized TWR obtained was 0.1238 mm 3 /min based on the optimal settings of input parameters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.